forest-ext

Clea F. Rees*

2026/01/19

Abstract

forest-ext consists of various libraries for Sao Zivanovié’s package forest (2017). The aim of the libraries is to
provide bug fixes or extensions currently unavailable in forest itself. I hope that this package — or at least
many of its constituents — will eventually be rendered unnecessary by an updated forest and disappear.

Contents
1 Basic usage

2 Tagging
2.0.1 Customisation L
2.0.2 Custom plugs
2.0.3 Complete control
2.1 Workflow L

2.2 Example Lo e e e

3 Multiple parents
3.1 Creating multiple parents L

3.2 Connecting multiple parents
4 Linguistics extensions

5 Utilities
5.1 Alignmento
5.2 Outer labels
5.3 ‘Tagging’ keylists L

6 Implementation
ext.ling
ext.multi

ext.tagging

*Bug tracker: codeberg.org/cfr/prooftrees/issues | Code: codeberg.org/cfr/prooftrees | Mirror: github.com/cfr42/prooftrees

ot

6

12

12

17

18
18
19

20

21

22

24

31

https://codeberg.org/cfr/prooftrees/issues
codeberg.org/cfr/prooftrees/issues
https://codeberg.org/cfr/prooftrees
codeberg.org/cfr/prooftrees
https://github.com/cfr42/prooftrees
github.com/cfr42/prooftrees

forest-ext 2 /55

ext.utils 44
7 Toks etc. 44
8 ‘Tagging keylists’ 45

9 Styles 49

forest-ext 3/ 55

1 Basic usage

This package currently provides the following libraries:

ext.ling (lib.) Experimental elementary support for trees involving multi-dominance, based on ext.multi. See
section 4.

ext.multi (lib.) Experimental elementary support for nodes with multiple parents. See section 3.
ext.tagging (lib.) Experimental automatic tagging of forest trees. See section 2.

Although this relies only on documented public interfaces provided by forest — no forest internals
are patched or redefined — the library does change the same PGF internals as the tagging support
in latex-lab-tikz-testphase (I4TEX Project 2025b).
ext.utils (lib.) Bits 'n bobs. See section 5.
For debugging, the following alternative libraries are provided:
ext.ling-debug (lib.) ext.ling plus debugging. See section 4.

ext.multi-debug (lib.) ext.multi plus debugging. See section 3.

ext.tagging plus debugging. See section 2.

S| o o O

(lib.)
(lib.)
ext.tagging-debug (lib.)
(lib.)

ext.utils-debug (lib.) ext.utils plus debugging. See section .

Load the libraries in the same way as standard libraries:
\usepackage [<comma-separated-list of libraries>]{forest}
or

\usepackage{forest}
\useforestlibrary{<comma-separated-list of libraries>}

For example, the following line would load forest-lib-ext.multi and apply any defaults globally.

\usepackage [ext .multi] {forest}

The following lines would load the same library, but without applying any defaults.

\usepackage{forest}
\useforestlibrary{ext.multi}

Any default settings can then be applied locally using \forestapplylibrarydefaults{(list of
libraries)}, if desired.

2 Tagging'

Note that this library requires ext.utils, described in section 5.
ext.tagging (lib.) Experimental semi-automatic tagging of forest trees.
ext.tagging-debug (lib.) ext.tagging plus debugging.

forest-lib-ext.tagging (and forest-lib-ext.tagging-debug) are based on the ‘first-aid’ in latex-lab-tikz-
testphase by Ulrike Fischer (IXTEX Project 2025b). Those patches do not work with forest because

‘For an introduction to support for tagged PDF in IXTEX 2¢, see Fischer (2025). For gorier details see, for
example, International Organization for Standardization (2025) and PDF Association (2024a,b) and related
publications.

forest-ext 4/ 55

a forest tree includes many tikzpicture environments, some of which may never be typeset
and all of which are used only indirectly via low-level TEX boxes. Moreover, the latex-lab code
depends on PGF’s ‘remember picture’ feature, which is not compatible with forest with or without
tagging.

In addition to making it possible to tag forest environments in tagged documents, the library
produces an alternative text describing the tree semi-automatically. This is important because
trees are unlike some other images, where relatively short summaries provide a reasonable
alternative to the picture. To provide high quality access to the information contained in a typical
tree, it is necessary to describe it in detail. Both the content of the nodes and their structural
relationships must be described, together with any labels and annotations.

The current implementation does not do all of the work: it does not include information from
regular labels or the content of annotations added using regular TikZ or PGF techniques. However,
it does describe the main tree’s structure, together with the content of its nodes and edge
labels, though you may need to override the generated content for content which includes special
characters, in a quite broad sense of ‘special’.

The support for tagging adds the following forest stages which are executed in order, sandwiched
between compute xy stage and before drawing tree.

If you redefine (or load code which redefines) the default implementation of stages,
you must include or replace the additions from this library. For an example of how
to do this, see prooftrees (Rees 2026), which includes, redefines, supplements or replaces these
additions.

before tagging nodes Empty by default. Analogous to before typesetting nodes, before packing etc.
(keylist) . . .

tag nodes (tag. keylist) Executes code to assign tagging code to each node in the tree.
Note this is a tagging keylist. See section 5.3.

before collating tags Empty by default. Analogous to before typesetting nodes, before packing etc.
(keyh,St) Walks the tree to collate the tags into a single alternative text for the tree.
collate tags (tag. keylist)
Note this is a tagging keylist. See section 5.3.
before tagging tree (keylist) Empty by default. Analogous to before typesetting nodes, before packing etc.

tag tree stage (stage) Calculates an approximate bounding box for the tree and inserts the collated tagging data into
the document’s tagging structure using tagpdf.

The code inserts a tagged structure analogous to (and heavily derived from) the alt plug provided
by latex-lab-tikz-testphase. However, unlike the latex-lab plug, the library generates the alt text
automatically by default. The result can be configured using a small number of keys. The keys’
scope is the entire tree, except that the scope of alt text is the current node.

alt text (auto. toks) = (tokens)
Override the automatic generation of alternative text for the current node.

Internally, the code uses the further key node@ttoks. In essence, if alt text is empty,
node@ttoks is constructed from the node’s content, edge label and any applicable struc-
tural descriptors, as specified by is root, is branch and so on. If alt text is not empty, it is
used as-is. The reason for this indirect assignment — first constructing node@ttoks and only
then assigning it to alt text — is that the value of node@ttoks is constructed incrementally
(i.e. partially by delayed keys) and keeping alt text as-is makes it easy to test during every
cycle.

node@ttoks is intended for purely internal use and should NOT be used outside the library code.
alt text is the public face of this key.

Note that tagging content is always attached to nodes®. Labels, edge labels and structures

2]’m not altogether happy with this implementation, so this may change, but I want to keep things relatively
simple for now.

forest-ext

5/ 55

is root (auto. toks reg.)

is child (auto. toks reg.)

is leaf (auto. toks reg.)

is edge label (auto. toks reg.)

has branches (auto. toks reg.)

is branch (auto. toks reg.)

tagging (bool. reg.)

tag nodes uses (choice)

collate tags uses (choice)

tag tree uses (choice)

are not (currently?) tagged independently. So, if you specify alt text, you replace not only
the content of the node in the corresponding tag, but the content of any edge label and any
relevant structural information. So if you want, say, a branch number prepended or an indication
that the node is a ‘child‘ or ‘leaf’, say, or that the tree forks from this node, you must include
that information into the (tokens) when specifying alt text.

= (tokens)

Specify text to insert when describing the root. Default is root.

= (tokens)

Specify text to insert when describing a child. Default is child.

= (tokens)

Specify text to insert when describing a leaf node. Default is end branch.

= (tokens)

Specify text to insert when describing an edge label. Default is edge label.
= (tokens)

Specify text to insert when describing a parent’s branches. Default is branches. A number is
inserted before to indicate the number of branches.

= (tokens)

Specify text to insert when describing node’s (and, hence, this subtree’s) position in the tree.
Default is branch. A number is appended to indicate which branch.

2.0.1 Customisation

Most users will not need the options explained in this section.

tagging may be used to make code conditional on the activation status of tagging. For this
reason, it has a public name. However, it should NOT be changed.

More generally, you should not suspend, resume, enable or disable tagging inside a forest
environment unless you understand what you are doing with respect to both the tagging code and
forests.

=nonelalt text

Configures the keylist tag nodes. alt text installs the default auto-generation code which
constructs a value if alt text is unspecified for a (non-phantom) node.

The order in which nodes are tagged may be set using tag nodes processing order. The
default is unique=tree.

=nonelalt text

Configures the keylist collate tags. alt text installs code to collate the values of the
autowrapped toks option alt text.

The order of collation may be set using collate tags processing order. The default is
unique=tree depth first.

=nonelalt text

Configures the style tag tree. alt text installs the default keys used to calculate approximate
dimensions for the bounding box and to pass the collated tags to the plug responsible for tagging
the tree.

This style is used by the default implementation of tag tree stage:

3Possibly nobody currently meets both of these requirements.

forest-ext 6/ 55

tag tree stage/.style={for root'=tag treel},

2.0.2 Custom plugs

By default, everything is noop. If the user does nothing and tagging is active, the alt plug is used.
If this is not desired, it is sufficient to use , which will make everything (remain) noop or , which
will allow the latex-lab patches to mix explosively with your forest trees. This is not recommended
unless you plan to prevent such encounters yourself. In the worst cases, the combination will
result in fatal compilation errors. In the best cases, the document will compile, but tagging will
almost certainly be broken.

However, it is possible to strike a middle course and use the infrastructure provided by this library
as the basis for custom tagging. Some approaches were explained in section 2.0.1. If those are
not sufficient, you may define custom plugs. This section explains the minimal requirements for
such plugs to be used by this library i.e. without using custom tagging.

Requirements Let Percy be the name of your custom plug. Then ext.tagging requires:

1. a plug named Percy for socket tagsupport/forest/setup;

2. a plug named Percy for socket tagsupport/forest/tag.

If both conditions are satisfied, writing

\forestset{/
plug=Percy,

}

will not result in an immediate error.

In order to do something useful, of course, Percy must do rather more than this, so let’s see what
alt is used. tagsupport/forest/setup is used right at the start of the tree. This happens before
any parenthetical argument is processed, before any star is used, before the default preamble
and well before any tree-specific preamble?. In particular, the default values of tagging keylists
may still be manipulated at this point, since the socket is used before they are transformed into
regular keylist options. The alt plug exploits this using the following code:

\socket_new_plug:nnn {tagsupport/forest/setup}{alt}
{
\forestsetq{
plug=alt,
tag nodes uses=alt text,
collate tags uses=alt text,
tag tree uses=alt,
}
}

Note that it is good practice to set plug here, even if the code is already plug-specific, since
the value is used later when calling the tagsupport/forest/tag socket. The content of the alt
tagsupport/forest/tag plug is very similar to the latex-lab patch for .

So let’s assume that Percy should use the same code as the alt plug for the tagsupport/forest/tag
socket, but something different for tagsupport/forest/setup.

41t uses a generic hook to inject code before an internal macro. This ensures it works for both the environment
and command forms without adding an additional TEX group, but is clearly not ideal.

forest-ext

7/55

As noted above, tag nodes uses, collate tags uses and tag tree uses are choice keys.
Given the way pgfkeys implements such keys, Percy might do something like this:

\NewSocketPlug {tagsupport/forest/setupt{percyr
{Z
\forestset{/
plug=percy,
tag nodes uses=percy,
collate tags uses=percy,
tag tree uses=alt,
Y
}
\forestset{/
declare autowrapped toks={percy text}{},
tag nodes uses/percy/.style={/
redeclare tagging keylist={tag nodes}{/
if percy text={}{/%
percy text/.option=content,
+percy text={Percy: 1},
H7Z
percy text+={: 1},
percy text+/.option=content,
1,
},
1,
collate tags uses/percy/.style={/
redeclare tagging keylist={collate tags}{/
collate tag/.option=percy text,
},
},
}
\NewSocketPlug {tagsupport/forest/tagt{percy}
{7
\AssignSocketPlug {tagsupport/forest/taglt{alt}/
\UseSocket {tagsupport/forest/tagl}/

3

This would result in each node in the tree contributing both its content and a prefix specified
by option percy text to the alternative text provided in the tagging structure of the PDF.
No structural information is added here i.e. there are no descriptions of branching or of the
relationships between nodes?®.

2.0.3 Complete control

custom tagging (code key) =true|false

not custom tagging (code key)

If true, do not tag following trees in the current TEX group.
This key must be used BEFORE \begin{forest} or \Forest.

If you do not want to use the library’s tagging code, you can easily avoid it by simply not using it.
However, you might want to use it for only some trees or you might wish to use the pre-defined
stages as a basis for a custom configuration. In such cases, custom tagging may be used to tell
the library that it should not tag trees in the local TEX group even if tagging is active. In this

5For a more realistic implementation, see section 6 for the code used for the alt plug. For a more elaborate
example of customisation, see Rees (2026).

forest-ext

8/ 55

case, the user (or another package) is entirely responsible for tagging. The custom tagging code
may nonetheless test tagging and use the additional stages, if desired. For example, it could
redefine the stages which generate and concatenate the tags or it could install alternative plugs
into appropriate sockets.

Note that latex-lab’s code is still active in this scenario, so you are responsible for dealing with
the patches it applies for tikzpicture environments. Note also that custom tagging is not a
boolean register or option — it is simply designed to emulate one. It in fact uses the .code
handler to set an expl3 boolean variable.

The default alt plug is implemented in modular fashion, so it is possible, with care, to take a
pick-'n-mix approach.

2.1 Workflow

ext.tagging redefines forest’s stages. If you just wish to use the library to tag ordinary trees,
you can ignore the details of this definition. However, should you wish to use the library with a
custom definition of stages, the details below should enable you to do so. As with forest’s own
definitions, the various steps may be redefined, replaced, removed or extended as required. The
library also follows the forest package’s convention in providing before keylists reserved for user
use i.e. all such keylists are empty by default.

Tagging is initialised and finalised by code added to the hooks env/forest/begin and
env/forest/end.

stages/.style={
for root'={
process keylist register=default preamble,
process keylist register=preamble
3,
process keylist=given options,
process keylist=before typesetting nodes,
typeset nodes stage,
process keylist=before packing,
pack stage,
process keylist=before computing xy,
compute xy stage,
process keylist=before tagging nodes,
process keylist=tag nodes,
process keylist=before collating tags,
process keylist=collate tags,
process keylist=before tagging tree,
tag tree stage,
process keylist=before drawing tree,
draw tree stage

T,

This describes the default implementation with setup plug=alt and tag plug=alt®’.

1. default preamble (see Zivanovié 2017)

2. preamble (see Zivanovi¢ 2017)

6Strictly speaking, the non-trivial claims in items 10 to 15 are almost entirely false as stated. For example,
tag nodes could construct an entirely new branch and put all the tagging information there, collate tags could
then collect that information and write it to an external file and tag tree stage could embed or attach that
file. But that is not very useful to know. The proof of this is simple: if such radical divergence features in your
tagging plans, you do not need this package, while, if you do, it shouldn’t. QED. It follows that you should skip
this footnote.

forest-ext

9/ 55

Ll o

.

10.

11.

12.

13.

14.
15.

16.

17.

given options (see Zivanovié¢ 2017)
before typesetting nodes (see Zivanovié¢ 2017)

typeset nodes stage (see Zivanovié 2017)

. before packing (see Zivanovié¢ 2017)
. pack stage (see Zivanovié¢ 2017)
. before computing xy (see Zivanovié¢ 2017)

. compute xy stage (see Zivanovié 2017)

before tagging nodes Empty by default. Use in the same way as forest’s before keylists.

tag nodes A tagging keylist which should, when processed, ensure that each node which
requires tagging is correctly tagged in whichever way the installed tag plug and associated
code requires e.g. for the default alt configuration, alt text.

before collating tags Empty by default. Use in the same way as forest’s before keylists.

collate tags A tagging keylist which should, when processed, result in the collation of all
tags for the tree in the form expected by tag tree stage.

before tagging tree Empty by default. Use in the same way as forest’s before keylists.

tag tree stage Executes code to actually tag the tree using the data finalised in collate
tags (possibly modified by before tagging tree).

before drawing tree (see Zivanovi¢ 2017)

draw tree stage (see Zivanovi¢ 2017)

forest-ext 10 / 55

2.2 Example

Here is a complete example?:

\DocumentMetadataq
tagging=on,

lang=en-GB,

pdfversion=2.0,
pdfstandard=ua-2,

}

\tagpdfsetup{
math/mathml/structelem,

}

\documentclass{article}

\usepackage [ext.tagging] {forest}

\ifcsname directlua\endcsname
\usepackage{unicode-math}

\else
\usepackage [T1]{fontenc}
\fi
\title{This Test Needs No Title}
\begin{document}
ABC apple banana pear
\begin{forest}
/% This example s from Jasper Habicht.
[ve
[DP [John]]
[V’, alt text=V prime,
[V[sent]]
[DP [Mary]]
[DP[D[al] [NP[letter]]]
]
]
\end{forest}
ABC apple banana pear
}
\end{document}

Note the use of alt text to avoid problems due to the use of ' with PDFTEX. If the (WTEX Project
recommended) engine Lual&TEX is used, you need not be quite so careful, but you should always check the
content of the alt text for unpleasant surprises.

If compiled with pdfIATEX, the above example yields the following structure:

<PDF>
<StructTreeRoot>
<Document xmlns="http://iso.org/pdf2/ssn"
id="ID.02"
>
<text-unit xmlns="https://www.latex-project.org/ns/dflt"
id="ID.05"

7Note that the recommended syntax for invoking and using tagging support in IATEX 2¢ changes very frequently. In particular,
the recommended options for \DocumentMetadata and \tagpdfsetup, including whether to use the latter at all, are not at all stable.
You should therefore check and use the recommended options at the time your document is written — there is nothing in the code
before \documentclass which is in any way particular to using the libraries provided by this package. That is, deviations from
documented best practice in the use of \DocumentMetadata and \tagpdfsetup are either due to mistakes on my part or the result
of updates following the publication of this document. In either case, you should avoid replicating the deviations in your own code.

forest-ext 11/ 55

rolemaps-to="Part"
>
<text xmlns="https://www.latex-project.org/ns/dflt"
id="ID.06"
xmlns:Layout="http://iso.org/pdf/ssn/Layout"
Layout:TextAlign="Justify"
rolemaps-to="P"
>
<?MarkedContent page="1" 2?>ABC apple banana pear
<Figure xmlns="http://iso.org/pdf2/ssn"
id="ID.07"
alt="root VP 2 branches branch 1 DP child John end branch V prime V child
— sent end branch DP child Mary end branch DP 2 branches branch 1 D child
—~ a end branch branch 2 NP child letter end branch "
xmlns:Layout="http://iso.org/pdf/ssn/Layout"
Layout:BBox="{ 259.4641, 542.90266, 407.35223, 667.19801 1}"
>
<?MarkedContent page="1" 2>
<?MarkedContent page="1" 2>
<?MarkedContent page="1" 2>
<?MarkedContent page="1" 2>
<?MarkedContent page="1" 2>
<?MarkedContent page="1" 2>
<?MarkedContent page="1" 2>
<?MarkedContent page="1" 2>
<?MarkedContent page="1" 2>
<?MarkedContent page="1" 2>
<?MarkedContent page="1" 2>
<?MarkedContent page="1" 2>
<?MarkedContent page="1" 2>
<?MarkedContent page="1" 2>
</Figure>
<?MarkedContent page="1" 2> ABC apple banana pear
</text>
</text-unit>
</Document>
</StructTreeRoot>
</PDF>

A similar result is obtained with LualATEX, but the output is a bit longer as it includes many empty
MarkedContents.

forest-ext

12 / 55

3 Multiple parents

This library provides some basic facilities for formatting trees which are not technically trees in
forest’s sense. In the (one) strict sense of ‘tree’, every node but one has exactly one parent, while
the one has none.

However, in a different/looser sense of ‘tree’, every node but one has at least one parent, while
the one has none. This library makes it a bit easier to draw such trees with forest.

The library began in response to a query from Alan Munn on TEX SE and initially focused
entirely on multi-dominance structures in linguistics. Support for those structures is available in
the ext.ling library, which now uses the more general ext.multi.

The styles in section 3.1 support drawing connections from a child to additional parents not
currently in the tree, while those in section 3.2 support adding connections to additional extant
parents.

Note that

o styles are always specified for the child node;

e the child must have exactly one ‘natural’ parent i.e. it must be part of the existing tree
structure when the style is used.

Load ext.multi or ext.multi-debug as described in section 1.

3.1 Creating multiple parents

Note:

o the child should be created as the child of its ultimate grandparent;

o the child’s parents will all be children of the child’s grandparent.

For example, consider the tree,

Grandparent

S N

Parent 1 Parent 2 Parent 3

~ |

Child

This structure can be conveniently created using multi, but to translate it into the bracket
notation forest uses, all of Child’s parents should first be omitted and Child should instead be
specified as the child of Grandparent.

\begin{forest}
[Grandparent [Child]]
\end{forest}

Parents 1, 2 and 3 should be specified as an option to Child:

\begin{forest}
[Grandparent [Child, multi={Parent 1,Parent 2,Parent 3}]]
\end{forest}

forest-ext

13 / 55

multi (style)

={(content of parent 1, ..., content of parent n)} where n € Nyn > 1

For every ¢ € N such that 0 < i < n, create a new child of the current node’s parent with content
(content of parent i). Then detach the current node from its parent and attach it as the child of
its n parents.

\begin{forest} 3 A
(A ;
o, ; /\
multi={B,D} : B D
] |
] : \/
\end{forest} | D

If parent anchor and/or child anchor are set, edges are drawn to/from these points as one
would expect.

\begin{forest}
[A
[D, multi={B,C},]
[E, parent anchor=children,
[J, multi={F,G,H,I},]

1 l

(X 1 \ / /\

[N, multi={L,M}, child }

< anchor=parent,] 1

] l

] :
\end{forest} !

If the edges library is loaded, the multi library loads the TikZ library, ext.paths.ortho and tries to
emulate forked edge appropriately®.

\begin{forest} 3
forked edges, :
[D, multi={B,C}] : [‘ ‘ ‘
[E[I 1ti={F,G,H}] | B C E J
] mu, 1= s M | | |
] Tt
[J } D F G H K L M
[N, multi={K,L,M}] ! L % J L % |
] |
] | | N
\end{forest} !

If we apply forked edges to only part of a tree, we can produce the rather ugly, but hopefully
informative, structure below.

8The alignment seems to me to be close, but not always quite perfect, though I do not know why at the moment.

forest-ext

14 /55

—| Box 3.5 I

\begin{forest}

\end{forest}

[R [Child, multi={P1,P2,P3},every parent=blue,]
< [Aunt [Cousin 1] [Cousin 2]]]

"
A

NIl /N

Child Cousin1 Cousin 2

every parent (keylist)

\begin{forest}
for tree={/
child anchor=parent,
parent anchor=children,
fork sep'=lem,

}’

[0 P T

o VAN
» multi=, Q R U V W X Y

] T

[T, forked edges=descendants, v T
[Z,multi={U,V,W,X,Y}] S Z

]
]
\end{forest}

Note that the change to fork sep for the tree in forest’s preamble affects the edges drawn from
and to the nodes inserted by multi. This is because the library forwards values given to fork
sep and applications of forked edge so that forest keys work in (hopefully) reasonably intuitive
ways.

Should you not want such keys forwarded, either load the library without defaults (see section 1)
or override the behaviour for the current TEX group with, say,

\forestset{/
unautoforward=fork sep,
null/.style={},
forked edge'/.forward to=/forest/null,
}

The phantom style is needed because, unlike forest’s provision for its own forwarding facilities,
pgfkeys provides no easy way to undo the effects of the .forward to handler.

Since the library is currently experimental and implementation is complicated if one wants to
avoid avoid using forest internals, configuration options are currently limited.

= {(key-value list)}

Apply (key-value list) to all the current node’s parents. If multi is used, these are the parents
created as a result; otherwise, it is the current node’s singular parent or none, if the node has no
parent.

Initial value: empty.

Box 3.5 illustrates usage with a simple example.

forest-ext 15/ 55

3.2 Connecting multiple parents

Sometimes one wants instead to give the current node an additional parent without removing the
existing one and one does not wish to add the additional parent, but rather to specify some other
extant node in the tree.

This kind of structure cannot be so easily automated, especially if one wants to avoid edges
crossing each other or nodes. However, it is possible to provide some convenient styles to assist in
manually specifying such structures.

also parent (style) ={(dynamic tree operation)}{({extant node):(keylist))}
={(dynamic tree operation)}{({extant node)}
+also parent (style) = {({({extant node):{keylist))}
= {(extant node)}
={({extant node) :(keylist))}
= {(extant node)}

also parent+ (style) =

Adds (extant node) as an additional parent of the current node. (keylist) specifies a list of
key-values for the connecting node (see below).

The current node becomes (extant node)’s fosterling, while (extant node) becomes the current
node’s foster parent.

The styles work by creating a new child of (eztant node). This node affects the structure of the tree
and can be configured in the usual way, but it is not visible. One might say it is ‘semi-phantom’:
it is not quite phantom because, for instance, it has visible edges which serve to connect the
current node with the additional parent.

For an illustration, see the (rather odd-looking) family tree in box 3.69.

+also parent prepends the new child to (eztant node); also parent+ appends it. These are just
shorthand wrappers around also parent using the prepend and append dynamic tree operations.

Note that (dynamic tree operation) should create a new node, though this is not enforced.
fosterlings (step) Visit the current node’s fosterlings.
foster parents (step) Visit the current node’s foster parents.
every fosterling (step) ={(nodewalk)}
Visit every fosterling in (nodewalk).
every foster parent (step) ={(nodewalk)}
Visit every foster parent in (nodewalk).
c fosterling (step) Visit the fosterling which the current node connects to a foster parent.
c foster parent (step) Visit the foster parent which the current node connects to a fosterling.

This last pair of steps are only really useful if you want to change edge path, since they are only
accessible from a constructed, typically invisible node.

debug multi phantoms (bool. =true|false
reg.)
not debug multi phantoms
(bool. reg.) Render the normally invisible nodes created by also parent etc. visible for debugging purposes.
If the nodes have no content, their borders are drawn in red; otherwise, their contents are rendered
in red. Visible rendering does not change the remainder of the tree e.g. it does not alter the
spacing of nodes or the paths of edges. However, if the nodes occur near the tree’s boundaries,

the bounding box may expand to accommodate them™.

9The names are from the children’s novels by Cynthia Voigt.
10Tt should not be hard to prevent this, but does not seem worth the trouble.

16 / 55

forest-ext

—| Box 3.6 I

1
| \
Cilla Abigail Tillerman
‘ [I : I
Eunice John Liza Francis Verricker Samuel
|

|
[I I I
Dicey James Maybeth Sammy

John

\begin{forest}
forked edges,
delay={/

for tree={/
+content=\strut,
},
1},
[,coordinate,calign primary child=1,calign secondary child=2,calign=midpoint,
[Cilla
[Eunice]
]
[Abigail Tillerman
[John,also parent={append}{j}]
[Liza, also parent={append}{!r3}, for children={also parent={append}{!un}}
[Dicey]
[James]
[Maybeth]
[Sammy]
]
[Francis Verricker,no edgel
[Samuel, also parent+={!r3}]
]
[John, name=j, no edge
]

1
\end{forest}

forest-ext 17/ 55

—| Box 3.7 I

| |
Cilla Abigail Tillerman John

Eunice John Liza Francis Verricker Samuel [[] [J]

Dicey James Maybeth Sammy [[0 O O

{7
\forestset{debug multi phantoms}/
\begin{forest}
forked edges,
delay={/
for tree={/
+content=\strut,
1,
},
[,coordinate,calign primary child=1,calign secondary child=2,calign=midpoint,
[Cilla
[Eunicel
]
[Abigail Tillerman
[John,also parent={append}{j}]
[Liza, also parent={append}{!r3}, for children={also parent={append}{!un}}
[Dicey]
[James]
[Maybeth]
[Sammy]
]
[Francis Verricker,no edgel
[Samuel, also parent+={!r3}]
]
[John, name=j, no edge
]
]
\end{forest}/
}

Requires ext.multi-debug. If the debugging code is not loaded, use of these keys will do nothing
but write a warning to the console and log.

For an example, see box 3.7. Note that the content of the forest environment is identical to
that in box 3.6. The red squares are the effect of toggling debug multi phantoms beforehand.

4 Linguistics extensions

This library provides some elementary styles for formatting trees involving multi-dominance,
together with a style for dealing with empty nodes resistant to the linguistics library’s nice empty
nodes. These former were developed in response to a query from Alan Munn on TEX SE.

See also section 3, especially for straight connections to multiple parents and dynamic creation of
multiple parents as children of a single grandparent.

pretty nice empty nodes ={(keylist)}
(style)

forest-ext 18 / 55

Make empty nodes prettier in cases where nice empty nodes cannot be used. (keylist) permits
supplementing or overriding what is done for empty nodes.

Note that nice empty nodes is preferable, so should be used where possible. For details, see the
documentation of nice empty nodes in Zivanovié¢ (2017).

For example'',

\begin{forest}
for tree={
calign angle=60,
align middle child,
1,
pretty nice empty nodes={
for current and
— siblings={anchor=parent},
parent anchor=children,
calign with current edge,
1,
[a
[b]
[
[
[d]
[e
[£]
[g]
[h]
]
]
[c]
]
]
\end{forest}

5 Utilities

This library provides tagging keylists, together with a few styles which do not really fit anywhere
else.

5.1 Alignment

align middle child (style) = (option)

If the current node has an odd number of children, sets calign child to the middle child and
sets calign= (option). (option) should, therefore, be a valid value for calign.

If {(option) is omitted, a default of child edge is applied.
See box 4.1 for an example.
align middle children (style) = {option)

Sets align middle child= (option) for the tree.

*Based on TEX SE answer: 717677. Based on TEX SE question 717592 by argo.

https://tex.stackexchange.com/a/717677
https://tex.stackexchange.com/q/717592

forest-ext

19 / 55

—| Box 5.1 I

\begin{forest}
for tree={

} 3
delay={
}’
fake=root,
H

}’
}

\end{forest}

parent anchor=children,
child anchor=parent,

for descendants={
content/.process={0w{level}{$\frac{1 {2 {#1}}$}},

for nodewalk={
while nodewalk valid={1}{1}/

outer label/.process={0w{level}{{$n=#1$}:{anchor=west}}}/

[’[[[][]][[][]]][[[][]][[][]]]]

51 5T n=1
/\ /\
» > » » n=2
Ve N N NN
1 1 1 1 1 1 1 1 n=23

outer labels at (toks reg.)

outer labels (keylist reg.)

outer label (style)

5.2 Outer labels

Outer labels are nodes added after the tree is drawn, aligned with a boundary of the bounding
box of the completed tree and nodes within the tree. The idea is to enable the addition of labels
such as those shown in box 5.1.

= (anchor)

Additional alignment point for any outer labels. (anchor) should be a valid anchor for the ‘current
bounding box‘ when the tree has been drawn, but additional code is not yet executed.

The default is east, which is probably what is wanted for most trees using the forest default
value of grow etc.

Note that this is a register. You cannot use different values for different parts of a tree.
= {(keylist)}

PGF/TikZ key-values applied to all nodes where outer label is set. Options passed to outer
label are applied later, so may override defaults for the tree.

The default is anchor=base west.

Note that this is a register. You cannot use different values for different parts of a tree.
={(content)}

={({content)} : {(options)}

Create a label aligned with the current node and the additional alignment point specified by
outer labels at with content (content). If (options) are given, they are passed to the code
responsible for creating the node.

forest-ext

20 / 55

5-3

‘Tagging’ keylists

A ‘tagging keylist’ is very similar to a forest keylist option, but its default value can be changed
and/or it can be redeclared'®. For motivation, see section 2.

More specifically, inside a forest environment, it behaves exactly like a regular forest keylist
option'3. However, outside a forest environment, its default value can be modified and/or
replaced. Where this is not a requirement, you should use a regular keylist option since tagging
keylists are subject to additional limitations and the implementation is significantly less efficient.

Important:

7.

. These keys are not really tagging-specific and do not require tagging to be active, despite

the names, so may be useful in other contexts.

. These keys are only available outside forest environments.

. Tagging keylists cannot be declared as registers'4. Each tagging keylist corresponds to a

keylist option. The option is automatically declared just before every forest environment
in the current TEX group.

. An additional TEX group is added to all forest environments. This ensures that the option

declaration is properly localised, which in turn allows any tagging keylists’ default values to
be further manipulated after the current forest is finished.

. Outside forest environments, unlike forest keylists, tagging keylists are not ordered and do

not store more than one instance of any key. The underlying implementation uses I3prop
property lists.

Inside forest environments, tagging keylists are ordered and behave as regular forest keylist
options. |3prop property lists are not used inside forest environments.

. Outside the forest environment, they may be manipulated only using the keys defined by

this library.

Inside the forest environment, they may be manipulated only using reqular forest methods.

Note that to actually influence a tree, any tagging keylist must be processed during the construction
of that tree. Simply declaring a tagging keylist with some set of options will not, in itself, affect
the typeset result in anyway. This is equally true of regular forest keylists. Please see Zivanovié
(2017) for details.

declare tagging ={(keylist)}{(key-value list)}

keylist,redeclare tagging 1. 3 e5 or redeclares a forest keylist option.

keylist (code key

Available only outside forest environments.

Since keylists cannot actually be redeclared, what really happens is this:

o An internal property list is defined to hold (default). This may then be manipulated using

the various keys explained below.

o At the start of each forest environment (within the current TEX group), a keylist option is

declared. The default value passed to declare keylist is not necessarily (key-value list).
It is, rather, a key-value list derived from the contents of the underlying property list at the
time. Hence, the default may be further manipulated after the keylist option is declared.

12As far as I can tell, this is not possible for regular forest keylist options. Once declared, their default values
are fixed.

13This is because it is a regular keylist option at this point.

*4This is not a limitation since changing the default value of a keylist register is trivial.

forest-ext

21/ 55

tagging keylist put (code
key)

tagging keylist remove key
(code key)

tagging keylist remove (code
key)

Note that if you do not want the default be be manipulable after the keylist is declared, you
should use the forest key declare keylist={(keylist)}{(key-value list)} instead, as this will be
far more efficient.

= {(keylist)Y{(key-value list)}
Adds the contents of (key-value list) to a (keylist) declared with declare tagging keylist.

Note that if (key-value list) includes an occurrence of a key already in the list, the key will be
replaced, even if the value differs.

= {(keylist)}{(key)}

Removes (key) from (keylist), where (keylist) was previously declared with declare tagging
keylist.

Available only outside forest environments.
Note this removes the (key) regardless of its current value (if any).
= {(keylist) }{ (key-value list)}

For each (key) or (key)= (value) pair in (key-value list), removes (key) from (keylist) iff it has the
specified (value) (if given) or no value (otherwise), where (keylist) was previously declared with
declare tagging keylist.

Available only outside forest environments.

Note that a valueless key is distinct from one with an empty value. To remove (key) iff it has no
value, use (key). To remove (key) iff it’s value is empty, use (key)= or (key)=.

6 Implementation

A double underscore (__) or an ‘at’ (@) indicates an internal macro or key. These are liable to
change without notice and should not be used elsewhere.

ext.ling

Clea F. Rees*

2026/01/19

<*sty>

1 \NeedsTeXFormat{LaTeX2e}

2 %% $Id: forest-ext-ling.dtx 11545 2026-01-19 07:08:04Z cfrees $}
3 (Idebug) \ProvidesForestLibrary{ext.ling}[2025-12-05 v0.1]

4 (debug) \ProvidesForestLibrary{ext.ling-debug}[2025-12-05 v0.1]
5%

6 (!debug) \disable@package@load {forest-lib-ext.ling-debug}

7 (debug) \disable@package@load {forest-lib-ext.ling}

8 {h

9 (Idebug) \PackageWarning {ext.ling (forest library)}

10 (debug) \PackageWarning {ext.ling-debug (forest library)}
11 {Only one of ext.ling and ext.ling-debug should be loaded.
12 Since the

13 (!debug) ext.ling

14 (debug) ext.ling-debug

15 library has already been loaded, I will ignore your request for
16 (!debug) ext.ling-debug.%

17 (debug) ext.ling.%

18 Y

19 }

<*debug> </debug>

pretty nice empty nodes (style) This is in the ext.ling library mostly because nice empty nodes is in the linguistics library and
not because linguists are more picky about their empty nodes than anybody else.

Is this even still useful?

Based on TEX SE answer: 717677. i gwestiwn Based on TEX SE question 717592 by argo.

20 \forestset{%
21 pretty nice empty nodes/.style={%

22 for tree={%

23 calign=fixed edge angles,
24 parent anchor=children,
25 delay={%

26 if content={}{J

27 inner sep=0Opt,

28 edge path'={(!lu.parent anchor) -- (.children)},
29 #1,

30 H3,

31 },

32 },

33 1,

34 }

*Bug tracker: codeberg.org/cfr/prooftrees/issues | Code: codeberg.org/cfr/prooftrees | Mirror: github.com/cfrg2
/prooftrees

22

https://tex.stackexchange.com/a/717677
https://tex.stackexchange.com/q/717592
https://codeberg.org/cfr/prooftrees/issues
codeberg.org/cfr/prooftrees/issues
https://codeberg.org/cfr/prooftrees
codeberg.org/cfr/prooftrees
https://github.com/cfr42/prooftrees
github.com/cfr42/prooftrees
https://github.com/cfr42/prooftrees
github.com/cfr42/prooftrees

forest-lib-ext.ling 23 / 55

</sty>

<*sty>

ext.multi

Clea F. Rees*

2026/01/19

35 \NeedsTeXFormat{LaTeX2e}
36 %%k $Id: forest-ext-multi.dtx 11545 2026-01-19 07:08:04Z cfrees $}

37 (Idebug) \ProvidesForestLibrary{ext.multi}[2025-12-05 v0.1]

38 (debug) \ProvidesForestLibrary{ext.multi-debug}[2025-12-05 v0.1]
39 h

40 (!debug) \disable@package@load {forest-lib-ext.multi-debug}

41 {debug) \disable@package@load {forest-lib-ext.multi}

PERY

43 (!debug) \PackageWarning {ext.multi (forest library)}

44 {(debug) \PackageWarning {ext.multi-debug (forest library)}

45 {0Only one of ext.multi and ext.multi-debug should be loaded.

46 Since the

47 (!debug) ext.multi

48 {debug) ext.multi-debug

49 library has already been loaded, I will ignore your request for
50 (!debug) ext.multi-debug.%

51 (debug) ext.multi.¥

52 Yh

53 }

54 \forestsetq{

Public options.

every parent (keylist) Keylis
other parents (keylist)

55

56

ts.

declare
declare

Generic toks.

keylist={every parent}{},
keylist={other parents}{},

Internal options.

57
58
59
60
61
62
63
64
65
66
67
68

declare
declare
declare
declare
declare
declare
declare
declare
declare
declare
declare
declare

boolean={multi@connector}{0},
count={multi@n@parents}{0},
count={multi@connects@fosterling}{-1},
count={multi@connects@foster@parent}{-1},
keylist={multi@foster@parents}{},
keylist={multi@fosterlings}{},
keylist={multi@all@parents}{},
toks={multi@edge}{},
toks={multiQedge@subpath}{edgel},
toks={multi@edge@sublast}{--1},
toks={multi@edge@route}{--1},
toks={multi@parent@of}{},

*Bug tracker:

/prooftrees

codeberg.org/cfr/prooftrees/issues | Code: codeberg.org/cfr/prooftrees | Mirror: github.com/cfrg2

24

https://codeberg.org/cfr/prooftrees/issues
codeberg.org/cfr/prooftrees/issues
https://codeberg.org/cfr/prooftrees
codeberg.org/cfr/prooftrees
https://github.com/cfr42/prooftrees
github.com/cfr42/prooftrees
https://github.com/cfr42/prooftrees
github.com/cfr42/prooftrees

forest-lib-ext. multi

25 / 55

fosterlings

foster parents
every fosterling
every foster parent

step
step
step
step

c fosterling (step

c foster parent

(
(
(
(
(
(

step

)
)
)
)
)
)

My answer: 695602.. Based on TEX SE answer: 695600 by Alan Munn., which was based on

my original answer.

Public registers.

69 (debug) declare boolean register={debug multi phantoms},
70 (debug) not debug multi phantoms,

Internal scratch registers.

71 declare count register={multi@temp@counta},
72 multi@temp@counta=0,

73 declare toks register={multi@temp@toksa},
74 multi@temp@toksa={},

75 declare toks register={multi@temp@toksb},
76 ~multi@temp@toksb={},

Convenience multi-step nodewalk steps.

77 define long step={fosterlings}{}{/

78 if multi@fosterlings={}{}{%

79 split option={multi@fosterlings}{,}{id}%

80 iy

81 1},

82 define long step={foster parents}{}{/

83 if multi@foster@parents={}{}{/

84 split option={multi@foster@parents}{,}{id}%
85 Y

86 1,

87 define long step={every fosterling}{n args=1}{J
88 filter={#1}{>0_='!{multi@foster@parents}{}}%
89 },

go define long step={every foster parent}{n args=1}{/
01 filter={#1}{>0_='!{multi@fosterlings}{}}/

92 1,

93 define long step={c fosterling}{}{%

94 id/.option=multi@connects@fosterlingy

95 1},

96 define long step={c foster parent}{}{%

97 id/.option=multi@connects@foster@parenty
98 I},

multi (style) Make this node a grandchild of its current parent and insert specified parents.

99 multi/.style={}

100 {debug) debug@multi=Execute style multi at,
101 (debug) debug@multi@option=id,

102 split={#1}{, H{multi@parent},

103 (debug) debug@multi@option=multi@n@parents,
104 (debug) debug@multi@option=multi@all@parents,
105 before typesetting nodes={%

106 multi@parents/.process={},

107 000w

108 {name}

109 {multi@n@parents}

110 {multi@all@parents}

111 {{##133%

112 3},

113 delay n=2{J

114 multi@edge+= {(.child anchor) },

115 multi@temp@counta'=0,

116 split option={multi@all@parents}{,}{multi@also@parent},

https://tex.stackexchange.com/a/695602
https://tex.stackexchange.com/a/695600

forest-lib-ext. multi 26 / 55

117 } N

118 delay n=3{J

119 (debug) debug@multi@option=id,

120 (debug) debug@multi@option=multi@edge,
121 edge path'/.option=multi@edge,

122 } ’

123 },

124},

multi@also@parent (style) Auxiliary.

125 multi@also@parent/.style={}

126 (debug) debug@multi=Execute style multi@also@parent to for #1 at,
127 (debug) debug@multi@option=id,

128 multi@temp@counta'+=1,

129 multi@edge+/.process={

130 OR= 7 0 w

131 {multi@n@parents}{multi@temp@countal

132 {multi@edge@sublast}{multi@edge@subpath}

133 {##1 (#1.parent anchor) }

134 1,

135 },

multi@parent (style) Insert a co-parent.

Note delay required in case name specified by user.

136 multi@parent/.style={%

137 (debug) debug@multi=Execute style multi@parent to add #1 at,
138 (debug) debug@multi@option=id,

139 (debug) debug@multi@option=every parent,

140 multi@n@parents'+=1,

141 delay/.process={0w{multi@n@parents}{%

142 multi@all@parents+/.process={0w{name}{parent ##1 of ####1}},
143 insert before/.process={%

144 00w2{name}{every parent}

145 v

146 [#1,name=parent ##1 of ####1 ,multiOparent@of=####1,
147 ####217,

148 Y

149 T,

150 Y

151 },

152 } s

153 % \end{fstyle}% ~~A >>>
154 % \begin{fstyle}{multi@parentsl}), ~~A <<<
155 % Adjust relms.

156 %

157 % Arguments: name, no.~parents, parents

158 % \begin{macrocode}

159 multi@parents/.style n args=3{}

160 (debug) debug@multi=Executing style multi@parents with,
161 (debug) debug@multi=options #1 #2 and #3,

162 if={>nw+P{#2}{isodd (##1)}}{%

163 multi@temp@counta/.expanded=\inteval{ (#2 + 1)/2},

164 for nodewalk={%

165 name/.expanded=parent \foresteregister{multi@temp@countal} of #1 7
166 H%

167 append=#1,

168 },

169 H%

170 multi@temp@counta/.expanded=\inteval{#2/2},

forest-lib-ext. multi 27/ 55

171 {(debug) debug@multi@register=multi@tempQcounta,
172 for nodewalk={%

173 name/ .expanded=parent \foresteregister{multi@temp@counta} of #1 %
174 H

175 insert after={%

176 [,coordinate,no edge,

177 tier=multi@tier@#1@parents,

178 delay={%

179 (debug) debug@multi=Appending #1 to,

180 (debug) debug@multi@option=name,

181 append=#1,

182 },

183 1%

184 1,

185 },

186 },

187 },

multi@add@parent (style) Connect an additional parent.

Argument: id of current node; dynamic tree operation; keylist for child; id of additional parent
(extant).

188 multi@add@parent/.style n args=4{}

189 (debug) debug@multi=Execute style multiQadd@parent to add #4 at,
190 {debug) debug@multi@option=id,

191 {debug) debug@multi=Arguments: #1: #2: #3: #4,
192 (debug) debug@multi@option=every parent,

193 delay n=2{%

194 for nodewalk={}

195 id=#4y

196 H%

197 multi@fosterlings+=#1,

198 (debug) debug@multi=dynamic action #2,

199 (debug) debug@multi@option=parent anchor,

200 #2={%,

201 [,

202 multi@phantom,

203 multi@connector,

204 multi@connects@fosterling=#1,

205 multi@connects@foster@parent=#4,

206 for current/.option=!{id=#1}.every parent,
207 delay n=3{%

208 do dynamics,

209 edge path'/.process={},

210 Ow {!{id=#1}.multi@edge@route} {%
211 ('c fosterling.child anchor)

212 ##1 (!c foster parent.parent anchor) ¥
213 i

214 },

215 also={#3},

216 (debug) debug@multi@option=id,

217 (debug) debug@multi=edge path and edge,

218 (debug) typeout/.option=edge path,

219 (debug) debug@multi@option=edge,

220 },

221]70

222 })70

223 },

224 },

225 },

forest-lib-ext. multi 28 / 55

also parent (style) Make an existing node in the tree an additional parent of the current node. What actually

+also parent (style) happens is that the specified node gets a new child with a copy of the current node’s content.

also parent+ (style) However, this child is just like a phantom, except that it has a visible edge. This edge can then
be defined to look as if it connects the current node to the additional parent.

Arguments: dynamic tree operation; parent:options for new node

Why do I need to double hashes twice here?

226 also parent/.style 2 args={J

227 (debug) debug@multi=Executing style also parent at,
228 (debug) debug@nulti@option=id,

229 delay={%

230 split={#2}{: }Hmulti@temp@toksa,multi@temp@toksb},
231 (debug) debug@multi@register=multi@temp@toksa,

232 (debug) debug@multi@register=multi@temp@toksb,

233 if nodewalk valid={name/.register=multi@temp@toksa}{’

234 multi@temp@counta/.option=!{name/.register=multi@temp@toksal.id,
235 H%

236 multi@temp@counta/.option/.process={Rw{multi@temp@toksa}t{##1.id}},
237 1,

238 (debug) debug@multi@register=multi@temp@counta,

239 multi@foster@parents+/.register=multi@temp@counta,

240 multi@add@parent/.process={}%

241 0_RwR

242 {id}

243 {#1}

244 {multi@temp@toksb}

245 {{##1}}

246 {multi@temp@countal

247 },

248 },

249 1},

250 +also parent/.style={},

251 (debug) debug@multi=Executing style +also parent at,
252 (debug) debug@multi@option=id,

253 also parent={prepend}{#1},

254 }:

255 also parent+/.style={J

256 (debug) debug@multi=Executing style also parent+ at,
257 (debug) debug@multi@option=id,

258 also parent={append}{#1},

259 1,

multi@phantom (style) Not really phantoms.

260 multi@phantom/.style={

261 before drawing tree={}
262 (debug) if debug multi phantoms={%
263 (debug) rectangle,

264 (debug) if content={}{,
265 (debug) draw=red,

266 (debug) H

267 (debug) red,

268 (debug) 1,

269<debug> H%

270 coordinate,

271 (debug) },

272 typeset node,

273 1,

274 1,

forest-lib-ext. multi

29 / 55

add parent (style) Add a new node to the tree and connect it to the current node.

debug@multi (style) Internal styles for debugging. Should not be used directly, but may be applied by loading the

debug@multi@register (style)
debug@multi@option (style)

debug multi phantoms (style)
ot debug multi phantoms (style)

debugging code.

275 (debug) debug@multi/.code={%

276 (debug) \ExpandArgs {e} \typeout{[Forest ext.multi debug]::
277 (debug) },

278 (debug) debug@multilregister/.code={}

279 (debug) \ExpandArgs {e} \typeout{[Forest ext.multi debug]::
280 (debug) = \foresteregister{#11}J,

281 (debug) Y

282 (debug) },

283 (debug) debug@multi@option/.code={Y

284 (debug) \ExpandArgs {e} \typeout{[Forest ext.multi debug]::
285 (debug) = \foresteoption{#1}/,

286 (debug) Yh

287 (debug) },

'ext.multi' or remove this style.

Yh

\detokenize{#1}}%

\detokenize{#1}

\detokenize{#1}

288 (!debug) debug multi phantoms/.code={%
289 (!debug) \PackageWarning{forest-lib-ext.multi}{%
290 (!debug) You requested the style 'debug multi phantoms',
291 (!debug) but did not load the debugging code.
292 (!debug) Either load 'ext.multi-debug' instead of
293 (!debug) 'ext.multi' or remove this style.
204 (!debug) o
205 (\debug) 3,
296 (!debug) node debug multi phantoms/.code={},
297 (!debug) \PackageWarning{forest-lib-ext.multi}{%
298 (!debug) You requested the style 'nmot debug multi phantoms',
299 (!debug) but did not load the debugging code.
300 (!debug) Either load 'ext.multi-debug' instead of
()
()
()

}’

We need empty defaults here so that e.g. ext.ling can be loaded without edges, in which case the
set of default is empty. If edges is loaded, we overwrite this style in a hook at begindocument.

304 (Idebug) libraries/ext.multi/defaults/.style=

305 (debug) libraries/ext.multi-debug/defaults/.style=
306 {},

307 }

We need conditional code in case edges is loaded.

308 \AddToHook{begindocument}{/

309 \IfPackageLoadedT{forest-lib-edges}{%

310 (!debug) \PackageInfo{forest-lib-ext.multi}

311 (debug) \PackageInfo{forest-lib-ext.multi-debug}
312 {Found the edges library. Enabling support code.}/
313 \usetikzlibrary{ext.paths.ortho}’

314 \forestset{

multi@forked@edge (style) I wish forest used booleans or similar a bit more extensively here so this was easier to handle

(without clobbering).

315 multi@forked@edge/.style={%
316 /forest/.cd,

forest-lib-ext. multi 30/ 55

317 /tikz/ext/ortho/distance/.process={0w{fork sep}{-##1}},
318 every parent+={}

319 forked edge,

320 /tikz/ext/ortho/distance/.process={0w{fork sep}{-##1}},
321 },

322 multi@edge@subpath={%

323 (.child anchor) -|-

324 },

325 multi@edge@sublast={%

326 (.child anchor) -|-

327 T,

328 multi@edge@route={Y%

329 -l-

330 },

331 1,

Setup some (hopefully) intuitive defaults.

A negative value for ext/ortho/distance is measured from the target coordinate rather than
the start. We are constructing the paths backwards in comparison with forest. 0.5em is the forest
default. Do not try passing the option value here!

332 (!debug) libraries/ext.multi/defaults/.style=

333 (debug) libraries/ext.multi-debug/defaults/.style=
334 %

335 default preamble+={

336 Autoforward={fork sep}{%

337 every parent+={%

338 fork sep=##1,

339 edge+={/tikz/ext/ortho/distance=-##1},
340 },

341 edge+={/tikz/ext/ortho/distance=-##1},

342 1,

343 fork sep'=0.5em,

344 forked edge'/.forward to=/forest/multi@forked@edge,
345 },

346 },

There’s no ‘hook’ mechanism for this, so there is not really a nice or robust way of doing this, I
don’t think. For the edges library, in particular, there are, in fact, no defaults at all

347

libraries/edges/defaults/.append style={%

348 (Idebug)
349 (debug)

350

351 (!debug)
352 (debug)

353
354
355
356
357
358

359 h

360}

</sty>

libraries/ext.multi/defaults,
libraries/ext.multi-debug/defaults,
/utils/exec={}
\PackageInfo{forest-lib-ext.multi}
\PackageInfo{forest-lib-ext.multi-debug}
{k

Appending compatibility code for forked edges to default settings.%

Y
}7

Yh

Yh

ext.tagging

Clea F. Rees*

2026/01/19

<*sty> <@QQ=tagforest>

361 \NeedsTeXFormat{LaTeX2e}

362 %% $Id: forest-ext-tagging.dtx 11545 2026-01-19 07:08:04Z cfrees $}
363 (!debug) \ProvidesForestLibrary{ext.tagging} [v0.1]

364 (debug) \ProvidesForestLibrary{ext.tagging-debug}[v0.1]

365 %

366 (!debug) \disable@package@load {forest-lib-ext.tagging-debug}

367 (debug) \disable@package@load {forest-lib-ext.tagging}

368 {%

369 (!debug) \PackageWarning {ext.tagging (forest library)}

370 (debug) \PackageWarning {ext.tagging-debug (forest library)}
371 {0Only one of ext.tagging and ext.tagging-debug should be loaded.
372 Since the

373 (ldebug) ext.tagging

374 (debug) ext.tagging-debug

375 library has already been loaded, I will ignore your request for
376 (ldebug) ext.tagging-debug.’

377 (debug) ext.tagging.%

378 Y%

379 ¥

We don’t want inconsistent names in hooks.

380 \SetDefaultHookLabel{forest-ext/tagging}

As the name suggests, we need tagging keylists from ext.utils.

381 (!debug) \useforestlibrary*{ext.utils}
382 (debug) \useforestlibrary*{ext.utils-debug}
383 \ExplSyntaxOn

\1__tagforest_toks_tl expl3 variable to store non-expl3 toks.

384 \tl_new:N \1__tagforest_toks_tl

\1__tagforest_tmpa_str

385 \str_new:N \1__tagforest_tmpa_str

forestext_tagging_custom_bool Public boolean to allow custom config to override e.g. prooftrees.

custom tagging (code key)
386 \bool_new:N \1_forestext_tagging_custom_bool

387 \bool_set_false:N \1_forestext_tagging_custom_bool
388 \forestsetq{
389 custom tagging/.code={

*Bug tracker: codeberg.org/cfr/prooftrees/issues | Code: codeberg.org/cfr/prooftrees | Mirror: github.com/cfr42
/prooftrees

31

https://codeberg.org/cfr/prooftrees/issues
codeberg.org/cfr/prooftrees/issues
https://codeberg.org/cfr/prooftrees
codeberg.org/cfr/prooftrees
https://github.com/cfr42/prooftrees
github.com/cfr42/prooftrees
https://github.com/cfr42/prooftrees
github.com/cfr42/prooftrees

forest-lib-ext.tagging 32/ 55

390 \use:c {bool_set_#1:N} \1_forestext_tagging_custom_bool
391 1,

392 custom tagging/.default=true,

393 not custom tagging/.code={

394 \bool_set_false:N \1_forestext_tagging_custom_bool

395 1,

396

agforest_pgftikz_tag_bbox:nnn Retrieve saved coordinates.

agforest ftikz_tag_bbox:enn
8 -P& -tag- 397 \cs_new_nopar:Npn __tagforest_pgftikz_tag_bbox:nnn #1#2#3

398 {

399 __tagforest_pgftikz_tag_bbox_aux:eenn
400 o

401 \property_ref:ee {#1}{xpos}

402}

403 {

404 \property_ref:ee {#1}{ypos}

405

406 {#2}{#3}

407 }

408 \cs_generate_variant:Nn __tagforest_pgftikz_tag_bbox:nnn {enn}

est_pgftikz_tag_bbox_aux:nnnn The tagging code requires the bounding box for alt. Getting the exact value would require

est_pgftikz_tag_bbox_aux:eenn something more complicated, but this calculates a reasonable approximation for simple cases. It
is not exact because it does not, for instance, account for line widths at the least and greatest
coordinates. A more serious deficiency is that it ignores any annotations added to the tree,
including labels, edge labels, additional drawing commands etc.

The problem here is that if we wait until the end of the tikzpicture, the tokens required to
create the alt text no longer exist. A better solution might be to memoize the tree and get the
bounding box that way. Then we can simply write the tokens we need to file and access them at
any point during subsequent compilations. Or maybe it would be better to just save the tokens
and write this after the tree is drawn? But then we probably have to save them globally in order
to ‘smuggle’ them out, which is a bit obnoxious.

409 \cs_new_nopar:Npn __tagforest_pgftikz_tag_bbox_aux:nnnn #1#2#3#4
410 {

411 \dim_to_decimal_in_bp:n {#1sp}

412 \c_space_tl

413 \dim_to_decimal_in_bp:n {#2sp}

414 \c_space_tl

415 \dim_to_decimal_in_bp:n {#1sp+#3}

416 \c_space_tl

417 \dim_to_decimal_in_bp:n {#2sp+#4}

@8}

419 \cs_generate_variant:Nn __tagforest_pgftikz_tag_bbox_aux:nnnn {eenn}

socket) Is there an equivalent of the macro environment for sockets/plugs/hooks?

tagsupport/forest/init)
socket)
)
)

tagsupport/forest/tag

The support for memoize is currently noop, but we create the sockets.
support/forest/tag/mmz

socket

~ A~~~

tagsupport/forest/setup doesn’t correspond to anything in latex-lab (IATEX Project 2025a)
because I'm not sure how to make it.

agsupport/forest/setup (socket

420 \socket_new:nn {tagsupport/forest/init}{0}
421 \socket_new:nn {tagsupport/forest/tag}{2}

422 \socket_new:nn {tagsupport/forest/tag/mmz}{2}
423 \socket_new:nn {tagsupport/forest/setup}{0}

__tagforest_tag_suspend:n We are going to redefine the standard \tag_suspend:n and \tag_resume:n to prevent the
__tagforest_tag_resume:n tagging code being continuously stopped and started during tree construction. Before doing that,

forest-lib-ext.tagging

38/ 55

__tagforest_noop:n

gsupport/forest/inittag (plug)

support/forest/setup alt (plug)

we make private copies of both commands so that we can (i) still stop/start tagging ourselves
and (ii) restore the original definitions when we’re done.

This rather less than ideal solution is required because there is no way to disable the tagging
support for tikz locally: the only documented way to disable is global. But we do not want to
interfere with latex-lab’s tagging code for other tikzpicture environments. We just want to stop
it interfering in forest trees. Hence the hacks.

424 \cs_new_eq:NN __tagforest_tag_suspend:n \tag_suspend:n

425 \cs_new_eq:NN __tagforest_tag_resume:n \tag_resume:n

Something to \let the suspend/resume functions to.

426 \cs_new_nopar:Npn __tagforest_noop:n #1 {}

This plug corresponds roughly to tagsupport/tikz/picture/init, but the division of labour
between sockets/plugs is a bit different for forest.

427 \socket_new_plug:nnn {tagsupport/forest/init}{tag}
428 {

This part is modified from IKTEX Project (2025b), but runs in a different socket. I had a note
that using socket para/begin didn’t work here. That’s probably from tableaux? But I can’t
remember what I thought the problem was

429 \mode_if_vertical:T

ago o

431 \if@inlabel

432 \mode_leave_vertical:

433 \else

434 \tag_socket_use:n {para/begin}
435 \fi

436}

437 \tag_mc_end_push:

Note that assigning noop to all of the latex-lab sockets and suspending tagging is not sufficient to
suspend tagging. This is because hook code includes tagging commands, including commands
which start/stop tagging, unconditionally.

438 \socket_assign_plug:nn {tagsupport/tikz/picture/init}{noop}
439 \socket_assign_plug:nn {tagsupport/tikz/picture/begin}{noop}
440 \socket_assign_plug:nn {tagsupport/tikz/picture/end}{noop}

This does the forest (Zivanovié¢ 2017) setup before the tagging keylists are turned into keylist
options.

441 \socket_use:n {tagsupport/forest/setup}

Since we can’t disable that code only locally, we instead redefine the relevant commands. Even
this does not completely pause the tagging code, but it stops enough to yield a valid structure,
albeit one with a lot of empty mcs.

442 \cs_set_eq:NN \tag_suspend:n __tagforest_noop:n
443 \cs_set_eq:NN \tag_resume:n __tagforest_noop:n

Suspend tagging using private copy of public function.

444 __tagforest_tag_suspend:n {tagforest}
445 }

This doesn’t correspond to anything in I¥TEX Project (2025b) because I'm not sure how to make
it.

forest-lib-ext.tagging 34/ 55

446 \socket_new_plug:nnn {tagsupport/forest/setup}t{alt}

447 {

448 \forestset{

449 tag plug=alt,

450 tag nodes uses=alt text,
451 collate tags uses=alt text,
452 tag tree uses=alt,

453 ¥

454 }

gsupport/forest/tag alt (plug) This plug corresponds to latex-lab’s alt plug for tikz (IATEX Project 2025b). So far as possible,
these plugs are verbatim copies of the official plugs', but some changes are necessary for forest.

455 \socket_new_plug:nnn {tagsupport/forest/tag}r{alt}
456 1

Straight from latex-lab.

457 \tag_struct_begin:n

458 1

459 tag=Figure,

460 alt=\1__tagforest_toks_tl,
461}

462 \tag_mc_begin:n {tag=Figure}
463 \cs_new:cpe {tagforest@mark@pos@\the\tagforest@id}
464 1

The only real differences are that, as noted above, some code is used in the init socket rather
than here and that we use different functions to determine the coordinates of the origin and size
of the bounding box. Whereas latex-lab uses pgf’s remember picture functionality to record
the origin, we use Itproperties. Similarly, where latex-lab uses pgf to determine the extent of the
bounding box, we use forest to calculate approximate dimensions for the tree before it is drawn.

The use of Itproperties is quite all right, I think, and necessary as latex-lab’s method is not
compatible with forest. However, latex-lab’s bounding box calculation is far superior to the
method used here, so it would be useful to see if that can be modified for use once the rest of the
code works. (It should also be significantly faster.)

465 __tagforest_pgftikz_tag_bbox:enn {tagforest-id\the\tagforest@id}
466 {#13{#2}
467 }

Revert to copying latex-lab verbatim.

468 \tag_struct_gput:ene

469 {\tag_get:n {struct_num}}
470 {attribute}

arn A

472 /0 /Layout /BBox

473 [

474 \use:c

475 {tagforest@mark@pos@\the\tagforest@id}
476]

a7}

478 }

__tagforest_init: Corresponds to the analogous latex-lab function. Tests whether tagging is active and sets a forest
boolean accordingly.

479 \cs_new_nopar:Npn __tagforest_init:

*In other words, the bits that work are shamelessly copied from Ulrike Fischer’s code, while the bits which
don’t are mine.

forest-lib-ext.tagging

35/ 55

480
481
482
483
484
485
486
487

{

\global\advance\tagforest@id by 1\relax
\tag_if_active:TF

{

\forestset{
tagging=1,

(debug)
}

debug tagforest={Tagging active.},

If tagging is active and unless custom tagging is set, installs sets register plut to alt and assigns
plugs and sockets. If custom tagging is set, we just set the forest boolean tagging and make
__tagforest_end: noop. The custom stages are still in place, but these should hopefully have
no effect on anything. In any case, they are partially overridden by e.g. prooftrees which installs a
somewhat different and more complicated set.

488
489
490
491
492

494
495
496
497
498
499
500

501

530

\bool_if:NTF \1_forestext_tagging_custom_bool

{
(debug)

\tagforest@debug@typeout{Custom tagging configured.}

\cs_set_eq:NN __tagforest_end: __tagforest_noop:n

H

\cs_set_eq:NN __tagforest_end: __tagforest_tag_end:

(debug)

\tagforest@debug@typeout{Custom tagging not configured.}

\str_if_eq:eeT {tagforest@plug@NONE} {\foresteregister{setup plugl}

{

(debug)

}

\tagforest@debug@typeout{Looking for setup plug as none configured.}
\socket_get_plug:nN {tagsupport/tikz/picture/begin} \1__tagforest_tmpa_str
\exp_args:NnV \socket_if_plug_exist:nnTF {tagsupport/forest/setupl}
\1__tagforest_tmpa_str

{
\PackageInfo{ext.tagging (forest 1lib)l}{
Installing setup plug for tagging forest trees to match selection for
tikz pictures.
1

\exp_args:Ne \forestset{setup plug \exp_not:N = \1__tagforest_tmpa_str}
L
\PackageWarning{ext.tagging (forest 1ib)}{
Using alt setup plug for tagging as no match exists for plug
selected for tikz pictures
}
\forestset{setup plug=alt}
}

\str_if_eq:eeT {tagforest@lug@NONE} {\foresteregister{tag plug}t}

{
(debug)

}

\tagforest@debug@typeout{Looking for tag plug as none configured.}
\exp_args:NnV \socket_if_plug_exist:nnTF {tagsupport/forest/tag}
\1__tagforest_tmpa_str
{

\PackageInfo{ext.tagging (forest 1ib)}{

Installing tag plug for tagging forest trees to match selection for
tikz pictures.

}

\exp_args:Ne \forestset{tag plug \exp_not:N = \1__tagforest_tmpa_str}
o

\PackageWarning{ext.tagging (forest 1ib)}{

Using alt tag plug for tagging as no match exists for plug
selected for tikz pictures

}

\forestset{tag plug=alt}

}

forest-lib-ext.tagging 36 / 55

534 (debug) \tagforest@debug@typeout{Assigning plug tag to tagsupport/forest/init.}

535 \socket_assign_plug:nn {tagsupport/forest/init}{tag}
536 (debug) \tagforest@debug@typeout{Using socket tagsupport/forest/init.}
537 \socket_use:n {tagsupport/forest/init}

We also do what we can to stop the residual tagging code from marking up useless content. This
mitigates the problem, but does not entirely solve it.

538 \def\pgfsys@beginQtext{}

539 \def\pgfsys@endOtext{}

540 }

541

542 \forestset{tagging=0,

543 (debug) debug tagforest={Tagging inactive.},

544 }

545 \cs_set_eq:NN __tagforest_end: __tagforest_noop:n
546 }

547 F

__tagforest_end: Again, analogous to the corresponding latex-lab function (IATEX Project 2025b).
__tagforest_tag_end:
548 \cs_new_eq:NN __tagforest_end: __tagforest_noop:n
549 \cs_new_nopar:Npn __tagforest_tag_end: {
550 __tagforest_tag_resume:n {tagforest}

Restore the format’s definitions of \tag_suspend:n and \tag_resume:n.

551 \cs_set_eq:NN \tag_suspend:n __tagforest_tag_suspend:n
552 \cs_set_eq:NN \tag_resume:n __tagforest_tag_resume:n

Standardish?

553 (debug) \if@tagforest@debug

554 (debug) \ShowTagging{mc-current}
555 (debug) \fi

556 \tag_mc_end:

557 \tag_struct_end:

558 \tag_mc_begin_pop:n {}

559 }

__tagforest_tag_tree_tag:nnn This function is responsible for recording the tree’s page coordinates, tidying up the collected

\tagforest@tag@tree@tag tokens for the alt text and utilising the tagging socket.

560 \cs_new_nopar:Npn __tagforest_tag_tree_tag:nnn #1#2#3
561 {

562 \tex_savepos:D

563 \property_record:ee {tagforest-id\the\tagforest@id}
564 {xpos,ypos}

565 \tex_savepos:D

566 \tl_set:Ne \1__tagforest_toks_tl {

567 \exp_args:No \text_purify:n { \the\tagforest@toks }
568 }

Utilising the socket requires briefly reenabling tagging else the commands would have no useful
effects.

569 __tagforest_tag_resume:n {tagforest}

570 \socket_assign_plug:nn {tagsupport/forest/tagr{#1}

571 \ifmemoizing

572 \socket_assign_plug:nn {tagsupport/forest/tag/mmz}{#1}
573 \fi

574 \socket_use:nnn {tagsupport/forest/tagr{#2}{#3}

575 \socket_use:nnn {tagsupport/forest/tag/mmz}{#2}{#3}

forest-lib-ext.tagging

37/ 55

\tagforest@init

\tagforest@toks
\LogTagForestToks

\tagforest@id
\LogTagForestId

\if@tagforest@debug
\@tagforest@debugfalse
\@tagforest@debugtrue
\tagforest@debug@typeout

576 __tagforest_tag_suspend:n {tagforest}
577

Alias for use in pgf syntax.

578 \cs_new_eq:NN \tagforest@tag@treeQtag __tagforest_tag_tree_tag:nnn

Alias.

579 \cs_new_eq:NN \tagforest@init __tagforest_init:

580 \hook_gput_code:nnn {env/forest/end}{.}

581 {

582 __tagforest_end:

583 F

584 \hook_gput_code:nnn {env/forest/begin}{.}

585 {

586 __tagforest_init:

587 }

588 \hook_gset_rule:nnnn {env/forest/begin}{.}<{forest-ext/utils}

589 \ExplSyntax0ff

Name for a new toks and some ways to peek when debugging.

590 \newtoks\tagforest@toks
591 (debug) \newcommand \LogTagForestToks{/,

592 (debug) \expandafter\typeout\expandafter{\expanded{’,

593 (debug) \detokenize{[tagforest debugl:: current toks: 1}/

594 (debug) \expandafter\detokenize\expandafter{\the\tagforest@toksl}/,
595 (debug) Yo

596 (debug) %

597 (debug)

Name for a new count.

598 \newcount\tagforest@id
599 (debug) \newcommand \LogTagForestId{/

600 (debug) \expandafter\typeout\expandafter{\expanded{’,

601 (debug) \detokenize{[tagforest debug]:: current id: }%
602 (debug) \the\tagforest@id

603 (debug) Y

604 (debug) Y

605 (debug) }

Conditional for debugging.

606 \newif\if@tagforest@debug

607 (!debug) \@tagforest@debugfalse

608 (debug) \@tagforest@debugtrue

609 \newcommand \tagforest@debug@typeout [1]1{%

610 \if@tagforest@debug

611 \ExpandArgs {e} \typeout{[tagforest debug]:: \detokenize{#1}1}/,
612 \fi

613 }

614 \forestsetq{

For debugging. <*debug>

615 debug tagforest/.code={
616 \tagforest@debug@typeout{#11}J,
617 1},

forest-lib-ext.tagging 38/ 55

< /debug> Various additions in the form of forest options and registers. By default, these are
noop.

618 declare boolean register={tagging},
619 tagging=0,

620 declare toks register={setup plug},
621 setup plug=tagforest@plug@NONE,

622 declare toks register={tag plug},
623 tag plug=tagforest@plug@NONE,

624 Autoforward register={setup plug}{’

625 TeX={%

626 \IfSocketPlugExistsTF {tagsupport/forest/setup}t{#1}{%
627 \AssignSocketPlug {tagsupport/forest/setupt{#1}/%
628 H

629 \PackageError{ext.tagging (forest library)}{%

630 No plug named '#1' exists for socket 'tagsupport/forest/setup'.%
631 H

632 See the forest-ext manual for details.

633 Y

634 Y

635 1,

636 1},

637 Autoforward register={tag plug}t{’

638 TeX={%

639 \IfSocketPlugExistsTF {tagsupport/forest/tagr{#1}{%
640 \AssignSocketPlug {tagsupport/forest/tagr{#1}%

641 Hn

642 \PackageError{ext.tagging (forest library)}{/

643 No plug named '#1' exists for socket 'tagsupport/forest/tag'.’%
644 Hi

645 See the forest-ext manual for details.%

646 Yo

647 Yh

648 1,

649 }

650 plug/.style={%

651 setup plug={#1},
652 tag plug={#1},
653 1,

tag nodes (tag. keylist) I wanted to use a nodewalk styles for tagging and collation, but couldn’t (easily) figure out how,
collate tags (tag. keylist) so sticking to keylists and processing orders for now. Hence, only the final step is a stage
But I suspect there’s a performance hit here (Or maybe not without comparing internals
with public interfaces? prooftrees uses keylists and I don’t think Saso suggested substituting code

keys for speed at any point? But that was a long time ago)

654 declare tagging keylist={tag nodes}{},
655 declare tagging keylist={collate tags}{},

before tagging nodes (keylist) Regular keylist options.

before collating tags (keylist
g tags (keylist) 656 declare keylist={before tagging nodes}{},

657 declare keylist={before collating tags}{},
658 declare keylist={before tagging treel}{},

before tagging tree (keylist)

node@ttoks (auto. toks) Private and public.

alttext (auto. toks
() 659 declare autowrapped toks={node@ttoks}{},

660 declare autowrapped toks={alt text}{},
is root (auto. toks reg.) Structural descriptors.
auto. toks reg.

auto. toks reg.

is leaf
is child
is edge label

auto. toks reg.

)

)

)

auto. toks reg.)
has branches)
)

A~ N N N N~

is branch (auto. toks reg.

forest-lib-ext.tagging

39 / 55

661 declare autowrapped toks register={is root},

662 is root={root},

663 declare autowrapped toks register={is leaf},

664 is leaf={end branch},

665 declare autowrapped toks register={is child},

666 is child={child},

667 declare autowrapped toks register={is edge labell},
668 is edge label={edge label},

669 declare autowrapped toks register={has branches},
670 has branches={branches},

671 declare autowrapped toks register={is branch},
672 is branch={branch},

The tagging code depends on injecting additional processing steps into forest’s processing of
the tree. This requires redefining stages to include the extra steps. This has global effect, but
hopefully does no harm

673 stages/.style={

674 for root'={

675 process keylist register=default preamble,
676 process keylist register=preamble

677 },

678 process keylist=given options,

679 process keylist=before typesetting nodes,
680 typeset nodes stage,

681 process keylist=before packing,

682 pack stage,

683 process keylist=before computing xy,

684 compute xy stage,

The additions for tagging are inserted between compute xy stage and before drawing tree.

685 (debug) debug tagforest={Process keylist: before tagging nodes ...},

686 process keylist=before tagging nodes,

687 (debug) debug tagforest={Process keylist: tag nodes ...},

688 process keylist=tag nodes,

689 (debug) debug tagforest={Process keylist: before collating tags ...},
690 process keylist=before collating tags,

691 (debug) debug tagforest={Process keylist: collate tags ...},

692 process keylist=collate tags,

693 (debug) debug tagforest={Process keylist: before tagging tree ...},
694 process keylist=before tagging tree,

695 (debug) debug tagforest={Stage: tag tree stage ...},

696 tag tree stage,

697 (debug) debug tagforest={Completed all tagging stages!’},

698 process keylist=before drawing tree,

699 draw tree stage

700 }5

701 tag nodes processing order/.nodewalk style={unique=tree},
702 collate tags processing order={unique=tree depth first},
703 tag tree stage/.style={for root'stag treel},

By default, the crucial stage does nothing.
704 tag tree/.style={},

Redefine various of the additions to stages to do something useful. The remaining additions are
to allow user interventions.

We split this up so bits can be used more flexibly e.g. by prooftrees. prooftrees doesn’t want the
code which generates tags, but it does want tag tree. (Well, prooftrees had this code first, so it
wants what ext.tagging is pinching.

forest-lib-ext.tagging

40 / 55

tag nodes uses (choice) How to tag individual nodes. Currently, only nodes can be tagged.

705 tag nodes uses/.is choice,
706 tag nodes uses/noop/.style={J

707 redeclare tagging keylist={tag nodes}{},
708 },

709 tag nodes uses/alt text/.style={)

710 redeclare tagging keylist={tag nodes}{J
711 delay={%

712 if level=0{%

713 if alt text={}{%

714 +node@ttoks/.process={Ru{is root}{##1\ }},
715 Hi,

716 HZ,

717 +,

718 if phantom={}{}

719 if alt text={}{¥%

720 if edge label={}{%

721 (debug)
722 (debug)
723 (debug)
724
725
726 (debug)
727 (debug)
728 (debug)
729
13,
730
731
732 (debug)
733
734
735
736 (debug)
737 (debug)
738
739
740
741
742
743
744 (debug)
745
746
747
748 (debug)
749
750
751
752
753
754
755

756 },

757 },
758 1},

debug tagforest/.process={0w {id}{Node id: ##11}},

debug tagforest/.process={0w{content}{No edge label.

Content is ##1}},
node@ttoks/.process={0w{content}{##1}},

o

debug tagforest/.process={0w {id}{Node id: ##13}},

debug tagforest/.process={0w{edge label}{Edge label is ##11}},

debug tagforest/.process={0w{content}{Content is ##1}},
node@ttoks/.process={R00w3{is edge label}{content}{edge labell}{\ ##1 ##2 ##3\

1,
if={>0_>{n children}{1}}{%
debug tagforest/.process={00w2 {id}{n children}{Node id: ##1 has ##2 branchesl}},
node@ttoks+/.process={0Rw2{n children}{has branches}{\ ##1 ##2\ }},
delay={%
for children={}
debug tagforest/.process={0w {id}{Node id: ##13}},
debug tagforest/.process={0w{n}{Branch no. is ##1}},
+node@ttoks/.process={R0w2{is branch}{n}{\ ##1 ##2\ 1},
},
},
i
if n children=1{%
delay={%
debug tagforest/.process={0w {id}{Node id: ##1 has 1 childl}},
11.+node@ttoks/.process={Rw{is child}{\ ##1\ 1}},
},
o
debug tagforest/.process={0w {id}{Node id: ##1 is a leafl}},
node@ttoks+/.process={Rw{is leaf}{\ ##1\ 1}},
},
1,
delay n=2{%
alt text'/.option=node@ttoks,
1},

Hi,

collate tags uses (choice) I don’t really like this way of doing this. I’d rather use e.g. a .choice key or something for
collate tags, but I'm not sure how to do that and have the keylist be public

759 collate tags uses/.is choice,

forest-lib-ext.tagging 41/ 55

760 collate tags uses/noop/.style={}

761 redeclare tagging keylist={collate tags}{},
762 },

763 collate tags uses/alt text/.style={}

764 redeclare tagging keylist={collate tags}{%
765 collate tag/.option=alt text,

766 },

767},

collate tag (code key) How to collate the tags.

768 collate tag/.code={/,

769 (debug) \tagforest@debug@typeout{Appending toks #1 .}J
770 \forestext@toksapp\tagforest@toks{#1 1}/
o,

tag tree uses (choice) Calculate dimensions used to determine an approximate bounding box size.

772 tag tree uses/.is choice,
773 tag tree uses/moop/.style={}

774 tag tree/.style={},

775 1,

776 tag tree uses/alt/.style={J, wrong bbox!!

77 tag tree/.style={%

778 tempdimc/ .max={>00w2+d{x}{max x}{####1+####2}}{treel},
779 tempdimc-/.min={>00w2+d{x}{min x}{####1+####2}}{tree},
780 tempdimd/ .max={>00w2+d{y}{max y}I{####1+####2}}{tree},
781 tempdimd-/.min={>00w2+d{y}{min y;{###t#1+####2}}{treel},

782 (debug) debug tagforest={Dimensions (x then y) are },
783 (debug) debug tagforest/.register=tempdimc,
784 (debug) debug tagforest/.register=tempdimd,

The next line should create the tagging structure and insert the assembled alt text.

785 {(debug) debug tagforest/.process={RRRw3{tag plugl}{tempdimc}{tempdimd}{’
786 (debug) Tagging tree now with tag plug=####1, x=H###2, y=####3 ...}},
787 TeX/.process={RRRw3{tag plug}{tempdimc}{tempdimd}{’

788 \tagforestQ@tagQtreeQ@tag{#### 1T {####2}{####3}}

789 },

790 1,

791},

792 }

oport/forest/tag/mmz alt (plug) From prooftrees, which will use it from here, hopefully.

793 \ExplSyntaxOn
794 \socket_new_plug:nnn {tagsupport/forest/tag/mmz}{alt}

795 1

796 \gtoksapp\mmzCCMemo{

797 \csname cctab_begin:c\endcsname {c__tagforest_nexpl_at_cctabl}
798 \global\advance\tagforest@id by 1\relax

799 \tex_savepos:D

800 \property_record:ee {tagforest-id\the\tagforest@id}
801 {xpos,ypos}

802 \tex_savepos:D

803 \mode_if_vertical:T

804 {

805 \if@inlabel

806 \mode_leave_vertical:

8o7 \else

808 \tag_socket_use:n {para/begin}

forest-lib-ext.tagging 42 /55

809 \fi

810 }

811 \tag_mc_end_push:
812 \tag_struct_begin:n
813 }

814 \xtoksapp\mmzCCMemo{
815 \c_left_brace_str
816 tag=Figure,

817 alt=

818 \c_left_brace_str
819 }

820 \exp_args:NNV \gtoksapp\mmzCCMemo \1__tagforest_toks_tl
821 \xtoksapp\mmzCCMemo{

822 \c_right_brace_str

823 \c_right_brace_str

824 }

825 \gtoksapp\mmzCCMemoq{

826 \tag_mc_begin:n {tag=Figure}

827 }

828 \gtoksapp\mmzCCMemo{

829 \cs_new:cpe {tagforest@mark@pos@\the\tagforest@id}
830 {

831 __tagforest_pgftikz_tag_bbox:enn {tagforest-id\the\tagforest@id}
832 {#13{#2}

833 }

834 \tag_struct_gput:ene

835 {\tag_get:n {struct_num}}

836 {attribute}

837 {

838 /0 /Layout /BBox

839 [

840 \use:c

841 {tagforest@mark@pos@\the\tagforest@id}
842]

843 }

844 \tag_mc_end:

845 \tag_struct_end:

846 \tag_mc_begin_pop:n{}

847 \cctab_end:

848 }

849 ¥

850 \hook_gput_code:nnn {begindocument/beforel}{.}

851{

852 \@ifpackageloaded{memoize}

853 {

854 \tag_if_active:T

855 {

856 \mmzset{direct ccmemo input=true,}

857 }

858 1}

859 \@ifpackageloaded{memoize-ext}

860 {

861 \cs_new_eq:NN __tagforest_property_ref_orig:nn __mmzx_property_ref_orig:nn
862 \cs_new_eq:NN \c__tagforest_nexpl_at_cctab \c__mmzx_nexpl_at_cctab
863

864 \cs_new_eq:NN __tagforest_property_ref_orig:nn \property_ref:nn
865 \cctab_const:Nn \c__tagforest_nexpl_at_cctab {

866 \cctab_select:N \c_code_cctab

867 \makeatletter

868 \int_set:Nn \tex_endlinechar:D { 13 }

forest-lib-ext.tagging 43/ 55

869 \char_set_catcode_space:n {91}

870 \char_set_catcode_space:n {321}

871 \char_set_catcode_active:n { 126 } % tilde
872 }

873 }

874 }

875 \ExplSyntax0ff

</sty>

ext.utils

Clea F. Rees*

2026/01/19

<*sty> <@@=forestext>

876 \NeedsTeXFormat{LaTeX2e}

877 ht $Id: forest-ext-utils.dtx 11545 2026-01-19 07:08:04Z cfrees $}
878 (Idebug) \ProvidesForestLibrary{ext.utils}[2025-12-05 v0.1]

879 (debug) \ProvidesForestLibrary{ext.utils-debugl}[2025-12-05 v0.1]
880 %

881 (Idebug) \disable@package@load {forest-lib-ext.utils-debug}

882 (debug) \disable@package@load {forest-lib-ext.utils}

883 {h

884 (ldebug) \PackageWarning {ext.utils (forest library)}

885 (debug) \PackageWarning {ext.utils-debug (forest library)}
886 {Only one of ext.utils and ext.utils-debug should be loaded.
887 Since the

888 (!debug) ext.utils

889 (debug) ext.utils-debug

890 library has already been loaded, I will ignore your request for
891 (Idebug) ext.utils-debug.%

892 (debug) ext.utils.Y

893 Yh

894 }

We don’t want inconsistent names in hooks.

895 \SetDefaultHookLabel{forest-ext/utils}

7 Toks etc.

Only used if other stuff isn’t loaded.

896 \ExplSyntaxOn

\forestext@toksapp Avoid standard name in case the user loads code which defines the macro after loading our
package.

897 \cs_new:Npn \forestext@toksapp#1#2{#1\expandafter{\the #1#2}}
898 \@ifpackageloaded{memoize}
899 {H

goo \newif\ifmemoizing\memoizingfalse
go1 }

\socket_get_plug:nN See https://github.com/latex3/latex2e/issues/1851#issuecomment-3566374363. I don’t know the
implementation status of Ulrike Fischer’s suggestion.

*Bug tracker: codeberg.org/cfr/prooftrees/issues | Code: codeberg.org/cfr/prooftrees | Mirror: github.com/cfr42
/prooftrees

44

https://github.com/latex3/latex2e/issues/1851#issuecomment-3566374363
https://codeberg.org/cfr/prooftrees/issues
codeberg.org/cfr/prooftrees/issues
https://codeberg.org/cfr/prooftrees
codeberg.org/cfr/prooftrees
https://github.com/cfr42/prooftrees
github.com/cfr42/prooftrees
https://github.com/cfr42/prooftrees
github.com/cfr42/prooftrees

forest-lib-ext. utils

45/ 55

forestext_fkeylist_declare:nn

restext_fkeylist_redeclare:nn

t_fkeylist_put_from_keyval:nn

go2 \cs_if_free:NT \socket_get_plug:nN

903 {

9o4 \cs_new_protected_nopar:Npn \socket_get_plug:nN #1#2
905 {

906 \str_set_eq:cN { 1__socket_#1_plug_str } #2

go7 }

908 }

8 ‘Tagging keylists’

A bit like expl3 property lists outside forest environments; just like forest keylist options inside
them.

Mostly intended for tagging, but possibly useful in some other context so here. Sylwad jps:
https://chat.stackexchange.com /transcript/message/68670752#68670752.

909 \ExplSyntaxOn

g10 \t1l_new:N \1__forestext_tmpa_tl

o11 \prop_new:N \1__forestext_tmpa_prop
912 \seq_new:N \1__forestext_tmpa_seq

Wrapper.

913 \cs_new_protected_nopar:Npn __forestext_fkeylist_declare:nn #1#2

914 {

015 (debug) \typeout{ [Forest ext.utils debugl:: Declare #1 with #2.}
916 \prop_new:c {l__forestext_#1_prop}

o917 __forestext_fkeylist_put_from_keyval:nn {#1}{#2}

018 (debug) __forestext_fkeylist_log:n {#1}

919 }

This one is the point, after all. That is, it is here that forest (Zivanovié¢ 2017) seems to lack
capacity (as far as I can tell).

920 \cs_new_protected_nopar:Npn __forestext_fkeylist_redeclare:nn #1#2
921 {

922 (debug) \typeout{[Forest ext.utils debug]:: Redeclare #1 with #2.}
923 \prop_clear:c {1__forestext_#1_prop}

924 __forestext_fkeylist_put_from_keyval:nn {#1} {#2}

925 (debug) __forestext_fkeylist_log:n {#1}

926 }

This is ugly as sin, but I13prop does not like keys without values.
jps: <- ‘we’ll need two steps of full expansion’ I don’t understand this at all.

jps: https://chat.stackexchange.com/transcript/message/68672267#68672267 ‘\exp_args:Nne
\prop_set_from_keyval:ce will in combination expand the entire thing two times inside an
e-argument, hence two steps of full expansion. It’s necessary because \keyval_parse:nnn returns
its result inside \exp_not:n, but we want to also expand all the auxiliary functions, hence two
steps.

927 \cs_new_protected_nopar:Npn __forestext_fkeylist_put_from_keyval:nn #1#2
928{

929 (debug) \typeout{[Forest ext.utils debugl:: Processing #2 for #1.}
930 \exp_args:Nne \prop_put_from_keyval:ce {1__forestext_#1_prop}

931 {

932 \keyval_parse:NNn

933 __forestext_fkeylist_put_from_keyval_aux:n

934 __forestext_fkeylist_put_from_keyval_aux:nn

https://chat.stackexchange.com/transcript/message/68670752#68670752
https://chat.stackexchange.com/transcript/message/68672267#68672267

forest-lib-ext.utils 46 / 55

935 {#2}
936 1}
937 }

keylist_put_from_keyval_aux:n jps. I would never have thought to do it this way?

eylist_put_from_keyval_aux:nn
038 \cs_new_nopar:Npn __forestext_fkeylist_put_from_keyval_aux:n #1

939 {

940 __forestext_fkeylist_put_from_keyval_aux:nn {#1} {\q_no_value}
941 }

942 \cs_new_nopar:Npn __forestext_fkeylist_put_from_keyval_aux:nn #1#2
943 {

0944 \exp_not:n { {#1} = {#2} },

945 }

forestext_fkeylist_tokeyval:n Wrapper.

946 \cs_new_nopar:Npn __forestext_fkeylist_to_keyval:n #1

947 {

948 \prop_map_function:cN {1__forestext_#1_prop} __forestext_fkeylist_to_keyval_aux:nn
949 }

ext_fkeylist_to_keyval_aux:nn Ugly as sin in reverse

950 \cs_new_nopar:Npn __forestext_fkeylist_to_keyval_aux:nn #1#2
951 {

952 \str_if_eq:nnTF {\q_no_value} {#2}

053 {\exp_not:n{#1},}{\exp_not:n{#1}=\exp_not :n{{#2}},}

954 }

__forestext_fkeylist_put:nn Wrapper.

955 \cs_new_protected_nopar:Npn __forestext_fkeylist_put:nn #1#2

956 {

o057 __forestext_fkeylist_put_from_keyval:nn {#1} {#2}
958 (debug) __forestext_fkeylist_log:n {#1}

959 }

_forestext_fkeylist_remove:nn ‘«< Unconditionally remove a key.

960 \cs_new_protected_nopar:Npn __forestext_fkeylist_remove:nn #1#2

961 {
962 \prop_remove:cn {1__forestext_#1_prop} {#2}
063 (debug) __forestext_fkeylist_log:n {#1}
964 }

t_fkeylist_remove_if_match:nn Conditional removal.

965 \cs_new_protected_nopar:Npn __forestext_fkeylist_remove_if_match:nn #1#2

966 {

067 (debug) \typeout{ [Forest ext.utils debugl:: Remove #2 from #1 if value match.}
968 \prop_set_eq:Nc \1__forestext_tmpa_prop {1__forestext_#1_prop}

969 \keyval_parse:NNn

g70 __forestext_fkeylist_remove_from_keyval_aux:n

971 __forestext_fkeylist_remove_from_keyval_aux:nn

o72 {#2}
973 \prop_set_eq:cN {1__forestext_#1_prop} \1__forestext_tmpa_prop
974 (debug) __forestext_fkeylist_log:n {#1}

975 }

forest-lib-ext. utils

47/ 55

list_remove_from_keyval_aux:n Auxiliaries.

ist_remove_from_keyval_aux:nn
976 \cs_new_protected_nopar:Npn __forestext_fkeylist_remove_from_keyval_aux:n #1

977 {

978 __forestext_fkeylist_remove_from_keyval_aux:nn {#1} {\q_no_value}

979 }

980 \cs_new_protected_nopar:Npn __forestext_fkeylist_remove_from_keyval_aux:nn #1
981 {

982 (debug) \typeout{[Forest ext.utils debug]:: Remove #1 if value is #2.}

083 \prop_get:NnN \1__forestext_tmpa_prop {#1} \1__forestext_tmpa_tl
984 \tl_if_eq:NnT \1__forestext_tmpa_tl {#2}

985 1

986 \prop_remove:Nn \1__forestext_tmpa_prop {#1}
987 }

988 }

\forestext@keylist@declare 2¢ aliases.
\forestext@prop@toQkeylist
\forestext@keylist@put
\forestext@keylist@removeQkey

989 \cs_new_eq:NN \forestext@keylist@declare __forestext_fkeylist_declare:nn

990 \cs_new_eq:NN \forestext@prop@to@keylist __forestext_fkeylist_to_keyval:n

991 \cs_new_eq:NN \forestext@keylist@put __forestext_fkeylist_put:nn

992 \cs_new_eq:NN \forestext@keylist@remove@key __forestext_fkeylist_remove:nn
\forestext@keylist@redeclare 993 \cs_new_eq:NN \forestext@keylist@remove __forestext_fkeylist_remove_if_match:
094 \cs_new_eq:NN \forestext@keylist@redeclare __forestext_fkeylist_redeclare:nn

\forestext@keylist@remove

ext_fkeylist_protected_show:n
\forestext@keylist@log

995 (debug) \cs_new_nopar:Npn __forestext_fkeylist_log:n #1

996 {debug) {

997 {debug) \typeout{[tagforext debugl:: #1: }

998 (debug) \prop_log:c {1__forestext_#1_prop}

999 (debug) }

1000 (debug) \cs_new_eq:NN \forestext@keylist@log __forestext_fkeylist_log:n

1001 \cs_generate_variant:Nn \prop_to_keyval:N {c}

1002 \cs_generate_variant:Nn \prop_put_from_keyval:Nn {ce}
1003 \ExplSyntax0ff

1004 \newtoks\forestext@toksa

Avoid using a hook.

1005 \forestset{%

forestext utils debug (style) Debugging.

1006 forestext utils debug/.style={J
1007 typeout={[Forest ext.utils debug]:: #1},
1008 },

lare tagging keylist (code key) Wrappers for primary functionality of these bits.

lare tagging keylist (code ke
gging wey (y)loog declare tagging keylist/.code 2 args={}

1010 (debug) \typeout{ [Forest ext.utils debugl:: Declaring tagging keylist
1011 (debug) \typeout{ [Forest ext.utils debug]l:: with default #2.}J

1012 \forestext@keylist@declare {#1}{#2}J

1013 (debug) \forestext@keylist@log{#11}/,

1014 \forestext@toksapp\forestextQ@toksa{y

1015 declare keylist/.process={_x{#1}{\forestext@prop@to@keylist{#1}}},

1016 §Y

1017 (debug) \expandafter\typeout\expandafter{\the\forestext@toksal,

1018 \pgfakeys{/forest}{%
1019 forestext utils debug={Setting processing order for #1 to unique=tree.},

#2

nn

#13}9

forest-lib-ext.utils 48/ 55

1020 #1 processing order/.nodewalk style={unique=tree},

1021 }%

1022},

1023 redeclare tagging keylist/.code 2 args={J

1024 (debug) \typeout{[Forest ext.utils debug]:: Redeclaring tagging keylist #1}J,
1025 (debug) \typeout{ [Forest ext.utils debugl:: with default #2.}J

1026 \forestext@keylist@redeclare {#1}{#2}/

1027 (debug) \forestext@keylist@log{#1}/

1028 },

tagging keylist put (code key) Wrappers for manipulating these keylists.

g keylist remove key (code key))) ,
eging keylist remove (code key) "°%? tagging keylist put/.code 2 args={J

1030 \forestext@keylist@put {#1}{#2}}
1031},

1032 tagging keylist remove key/.code 2 args={}
1033 \forestext@keylist@remove@key {#1}{#21}/,
1034 },

1035 tagging keylist remove/.code 2 args={J
1036 \forestext@keylist@remove {#1}{#2}/

1037 },

1038 }

Declare ‘tagging keylist’ options so we get defaults applied to nodes. Then zap all the user-facing
keys used to manipulate them.

We want this to happen really early, but we do need the group or there’s no point.

1039 \AddToHook{env/forest/begin}[.]1{%

1040 (debug) \typeout{ [Forest ext.utils debugl:: Creating options set with declare tagging
keylist.}%
1041 (debug) \expandafter\typeout\expandafter{\the\forestextQtoksal},

1042 \expandafter\forestset\expandafter{\the\forestext@toksaly
1043 \forestset{%

1044 tagging keylist error/.code={J,

1045 \PackageError{ext.tagging (forest library)}{/

1046 The key '#1' cannot be used inside a forest environment.%
1047 H%

1048 You need to use this key outside forest environments.
1049 Please see forest-ext's documentation for details.’
1050 Y

1051 },

1052 declare tagging keylist/.style 2 args={J

1053 tagging keylist error=declare tagging keylist},

1054 redeclare tagging keylist/.style 2 args={}

1055 tagging keylist error=redeclare tagging keylist},

1056 tagging keylist put/.style 2 args={%

1057 tagging keylist error=tagging keylist put},

1058 tagging keylist remove/.style 2 args={%

1059 tagging keylist error=tagging keylist remove},

1060 tagging keylist remove key/.style 2 args={J

1061 tagging keylist error=tagging keylist remove keyl,

1062 Y

1063 }

Attempt to accommodate command form(s). We want the hook code to be used inside the group,
if there is one, so \forest@config looks the obvious place to hook before (and would work for
the environment, too, but it’s internal

The ending is rather less obvious

forest-lib-ext.utils 49 / 55

Probably this should be a macro so we don’t run any other code chunks added here? It would be
good, too, if we had a check, I guess. That’s true for prooftrees, too, but seems less of a risk?
(Maybe?)

1064 \AddToHook{cmd/Forest/before}[.1{%
1065 \AddToHookNext{cmd/forest@config/before}{%

1066 \UseHook{env/forest/begin}’

1067 Y%

1068 \AddToHookNext{cmd/forest@node@drawtree/after}{’
1069 \UseHook{env/forest/end}

1070 }h

1071

g9 Styles

1072 \forestset{

align middle child (style) Based on TEX SE answer: 436985. Based on TEX SE question 436881 by A. D.

align middle children (style)
1073 align middle child/.style={

1074 before typesetting nodes={

1075 if={

1076 > Ow+P {n children}{isodd (##1)}
1077 H

1078 calign child/.process={

1079 Ow+n {n children}{(##1+1)/2}
1080 },

1081 calign=#1,

1082 H3,

1083 },

1084 1},

1085 align middle child/.default=child edge,

1086 align middle children/.style={

1087 for tree={align middle child=#1},

1088 1},

1089 align middle children/.default=child edge,
1tils@outer@label@opts (keylist) Options.

1090 declare keylist={utils@outer@label@opts}{},

outer labels (keylist reg.) Keys applied to all outer labels.
1091 declare keylist register={outer labels},
1092 outer labels={anchor=base west},

11s@has@outer@labels (bool. reg.) Boolean.

1093 declare boolean register=utils@has@outer@labels,
1094 utils@has@outer@labels=0,

outer labels at (toks reg.) Anchor.
1095 declare toks register=outer labels at,
1096 outer labels at=east,

utils@outer@label (auto. toks) Label.

1097 declare autowrapped toks={utils@outer@labell}{},

https://tex.stackexchange.com/a/436985
https://tex.stackexchange.com/q/436881

forest-lib-ext. multi

50 / 55

outer label (style)

1098

1099
1100

Args:

1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134

/forest/ext/utils/outer@label/anchor/.initial=base,
/forest/ext/utils/outer@label/anchor/.forward to=/tikz/anchor,
/forest/ext/utils/outer@label/.search also={/tikz,/pgf},

options, content

outer label/.style={%
split={#1}{:}{utils@outer@label,utils@outer@label@opts},
if utils@has@outer@labels={}{%

utils@has@outer@labels,

for root={%

1135 (!debug)
u36<debug>
{3

1137
1138

</sty>

tikz+={),
\coordinate (utils@outer@labels@align) at
(current bounding box.\foresteregister{outer labels at});
1,
before drawing tree={}
where utils@outer@label={}{}{%
tikz+/.process={},
000Rw4
{utils@outer@label}
{utils@outer@label@opts}
{!u.grow}
{outer labels}
{h
\path [%
rotate=##3,
] node [%
##4,
/forest/ext/utils/outer@label/.cd,
#42,
1 at (.\pgfkeysvalueof{/forest/ext/utils/outer@label/anchor}
|- utils@outer@labels®@align)
{##1};

libraries/ext.utils/defaults/.style=
libraries/ext.utils-debug/defaults/.style=

forest-lib-ext. multi 51/ 55

References

Fischer, Ulrike (2025). The tagpdf Package. vo.ggw. 31st Oct. 2025. CTAN: tagpdf.

International Organization for Standardization (2025). Document management applications — Electronic
document file format enhancement for accessibility —Part 2: Use of ISO 32000-2 (PDF/UA-2). 5th Apr.
2025.

PDF Association (2024a). ISO 82000-2:2020 (PDF 2.0) including Errata Collection 2. 24th Sept. 2024.

— (2024b). Well-Tagged PDF (WTPDF) Using Tagged PDF for Accessibility and Reuse in PDF 2.0. 28th Feb.
2024.

KTEX Project (2025a). latez-lab. 2025-11-01a. 1st Nov. 2025. CTAN: latex-lab.

— (2025b). The latex-lab-tikz Package: Support for the Tagging of TikZ Pictures. vo.80d. 27th Sept. 2025.
CTAN: latex-lab.

Rees, Clea F. (2026). prooftrees. 0.9.2. 16th Jan. 2026. CTAN: prooftrees.

Zivanovié¢, Saso (2017). Forest: A PGF/TikZ-Based Package for Drawing Linguistic Trees. 2.1.5. 14th July
2017. CTAN: forest.

Change History

vO0.1 Go back to using env begin hook as it won’t
General: First public release. 1 work with command form anyhow (and just
V0.2 have prooftrees invoke the hook manually as it
General: Add hook ordering rule as switching utils does anyhow. 48
(back) to begin env hook. 37
Index

Numbers written in italic refer to the page where the corresponding entry is described; numbers underlined
refer to the code line of the definition; numbers in roman refer to the code lines where the entry is used.

Symbols __forestext_fkeylist_to_keyval_aux:nn .. 948, 950
+also parent (style) 15, 226 __forestext_fkeylist_tokeyval:n @
\@ifpackageloaded 852, 859, 898 __mmzx_property_ref_orig:nn Wn
\@tagforest@debugfalse 606 __tagforest_end: 491, 493, 545, 548, 582
\@tagforest@debugtrue 606 __tagforest_init: 479, %7 586
" Sorestet fheriios deciureim -ty gty \--CeBEOTSSROOBi . 426, 442 4a 40 545 548
__forestext_fkeylist_log:n L __tagforest_pgftikz_tag bbox:emn .. 397, 465, 831

.......... 018, 925, 958, 963, 974, 995, 1000 __tagforest_pgftikz_tag_bbox:nnn 397
__forestext_fkeylist_protected_show:n 995 __tagforest_pgftikz_tag_bbox_aux:eenn .. 399, 409
__forestext_fkeylist_put:nn 955, 9791 __tagforest_pgftikz_tag_bbox_aux:nnmn 409
__forestext_fkeylist_put_from_keyval:nn __tagforest_property_ref_orig:nn 861, 864

...................... 917, 924, 927, 957 __tagforest_tag_end: 493, 548
__forestext_fkeylist_put_from_keyval_aux:r __tagforest_tag_resume:n 424, 550, 552, %

............................. 933, 938 __tagforest_tag_suspend:n 424, 444, 551, 576
__forestext_fkeylist_put_from_keyval_aux:nn . __tagforest_tag_tree_tag:nnn .. 7 560

............................. 934, @ -
__forestext_fkeylist_redeclare:nn 920, 994 A
__forestext_fkeylist_remove:nn 960, 992 add parent (style) ..o 275
__forestext_fkeylist_remove_from_keyval_aux:n \AddToHOOK 308, 1039, 1064

............................. 970, 976 \AddToHookNext 10065, 1068
__forestext_fkeylist_remove_from_keyval_aux:nn \advance 481, 798

.............................. 971, 976 align middle child (style) 18, 1073
__forestext_fkeylist_remove_if_match:nn %, 993 align middle children (style) 18, @

__forestext_fkeylist_to_keyval:n 946, 990 also parent (style) 15, 226

https://www.ctan.org/pkg/tagpdf
https://www.ctan.org/pkg/latex-lab
https://www.ctan.org/pkg/latex-lab
https://www.ctan.org/pkg/prooftrees
https://www.ctan.org/pkg/forest

forest-lib-ext. multi

52/ 55

also parent+ (style) 15, 226
alt text (autowrapped toks) 4
alttext (autowrapped toks) 659
\AssignSocketPlug 627, 640
autowrapped toks registers:
has branches 5, 661
is branch 5, 661
is child 5, 661
is edge label 5, 661
is leaf 5, 661
1S TOOt .. 5, 661
autowrapped toks:
alt text 4
alttext i 659
node@ttoks, 659
utils@outer@label 1097
B
before collating tags (keylist) 4, 656
before tagging nodes (keylist) 4, 656
before tagging tree (keylist) 4, 656
\begin 154, 158
\bool if:NTF 488
\bool mew:N 386
\bool_set_false:N 387, 394
boolean registers:
debug multi phantoms 15
not debug multi phantoms 15
tagging 5
utils@has@outer@labels 1093
C
c foster parent (step) 15, 77
c fosterling (step) 15, 77
\c__mmzx_nexpl_at_cctab 862
\c__tagforest_nexpl_at_cctab 862, 865
\c_code_cctab 866
\c_left _brace_str 815, 818
\c_right_brace_str 822, 823
\c_space_tl 412, 414, 416
\cctab_const:Nn 865
\cctab_end: 847
\cctab_select:N 866
\char_set_catcode_active:n 871
\char_set_catcode_space:n 869, 870
choice keys:
collate tags uses 5,759
tag nodes uses 5, 705
tag tree uses 5,772
code keys: o
collate tag 768
custom tagging 7, 386
declare tagging keylist 1009
declare tagging keylist,redeclare tagging
keylist 20
not custom tagging 7
redeclare tagging keylist 1009
tagging keylist put 21, 1029
tagging keylist remove 21, 1029

tagging keylist remove key 21, 1029
collate tag (code key) 768
collate tags (tagging keylist) 4, 654
collate tags uses (choice key) 5, 759
\coordinate 1107
\cs_generate_variant:Nn 408, 419, 1001, 1002
\cs_if_free:NT0.0.... 902
\CS_NEWICPE . . v vt ittt 463, 829
\cs_new:Npn 897
\cs_new_eq:NN 424, 425, 548, 578, 579,

861, 862, 864, 989, 990, 991, 992, 993, 994, 1000
\cs_new_nopar:Npn 397,

409, 426, 479, 549, 560, 938, 942, 946, 950, 995
\cs_new_protected_nopar:Npn

904, 913, 920, 927, 955, 960, 965, 976, 980
\cs_set_eq:NN 442, 443, 491, 493, 545, 551, 552
NCSNAME . . ot et e 797
custom tagging (code key) 7, 386

D

debug multi phantoms (bool.reg.) 15
debug multi phantoms (style) 288
debug@multi (style) 275
debug@multi@option (style) 275
debug@multi@register (style) 275
declare tagging keylist (code key) 1009
declare tagging keylist,redeclare tagging

keylist (codekey) 20
Ndef ..o 538, 539
\detokenize 276, 279, 284, 593, 594, 601, 611
\dim_to_decimal_in_bp:n 411, 413, 415, 417

\disable@package@load 6, 7, 40, 41, 366, 367, 881, 882

E
Nelse 433, 807
Nend ... 153
\endcsnamei 797
every foster parent (step) 15, 77
every fosterling (step) 15, 77
every parent (keylist) 14, 55
\exp_args:Ne 5006, 525
\exp_args:Nne 930
\exp_args:NNV 820
\exp_args:NnV 499, 518
\exp_args:No 567
Nexp_not:N 506, 525
\NeXp_Not:im v 944, 953
\expandafter ... 592, 594, 600, 897, 1017, 1041, 1042
\ExpandArgs 276, 279, 284, 611
\expandediiii 592, 600
\ExplSyntaxOff 589, 875, 1003
\ExplSyntaxOn 383, 793, 896, 909
ext.ling (lib.) 3
ext.ling-debug (lib.) 3
ext.multi (lib.), .. 3
ext.multi-debug (lib.) 3
ext.tagging (lib.) 3, 3
ext.tagging-debug (lib.) 3 8
ext.utils (lib.) 3
ext.utils-debug (lib.) 3

forest-lib-ext. multi

53 / 55

F
NFL 435, 555, 573, 612, 809
\foresteoption 285
\foresteregister 165, 173, 280, 495, 515, 1108
forestext utils debug (style) 1006
\forestext@keylist@declare 989, 1012

\forestext@keylist@log
\forestext@keylist@put

995, 1013, 1027
989, 1030

\forestext@keylist@redeclare 989, 1026
\forestext@keylist@remove 989, 1036
\forestext@keylist@remove@key 989, 1033

\forestext@prop@tolkeylist 989, 1015

\forestext@toksa 1004, 1014, 1017, 1041, 1042
\forestext@toksapp 770, 897, 1014
\forestset 20, 54, 314, 388, 448, 484, 506,
512, 525, 531, 542, 614, 1005, 1042, 1043, 1072
foster parents (step) 15, 77
fosterlings (step) 15, 77
G
\global 481, 798
\gtoksapp 796, 820, 825, 828
H
has branches (autowrapped toks reg.) 5, 661
\hook_gput_code:nnn 580, 584, 850
\hook_gset_rule:nnnn 588
I
\if@inlabel 431, 805
\if@tagforest@debug 553, 606
\ifmemoizing 571, 900
\IfPackageLoadedT 309
\IfSocketPlugExistsTF 626, 639
\int_set:Nn 868
\inteval 163, 170
is branch (autowrapped toks reg.) 5, 661
is child (autowrapped toks reg.) 5, 661
is edge label (autowrapped toks reg.) 5, 661
is leaf (autowrapped toksreg.) 5, 661
is root (autowrapped toksreg.) 5, 661
K
keylists registers:
outer labels 19, 1091
keylists: o
before collating tags 4, 656
before tagging nodes 4, 656
before tagging tree 4, 656
every parent 14, 55
other parents 55
utils@outer@label@opts 1090

\keyval_parse:NNn

\1__forestext_tmpa_prop
\1__forestext_tmpa_seq 912
\1__forestext_tmpa_tl 910, 983, 984
\1__tagforest_tmpa_str 385, 498, 500, 500, 519, 525

. 911, 968, 973, 983, 986

\1__tagforest_toks_tl 384, 460, 566, 820

\1_forestext_tagging_custom_bool 386, 488
libraries: o
ext.ling 3
ext.ling-debug, 3
ext.multi 3
ext.multi-debug 3
ext.tagging 3 3
ext.tagging-debug 2 3
ext.utils oo 3
ext.utils-debug, 3
\LogTagForestId 598
\LogTagForestTOKSc..ououo... 590
M
\makeatletter 867
\memoizingfalse 900
\mmzCCMemo 796, 814, 820, 821, 825, 828
\NIMmMZSet 856
\mode_if_vertical:T 429, 803
\mode_leave_vertical: 432, 806
multi (style) 13, 99
multi@add@parent (style) 188
multi@also@parent (style) 125
multi@forked@edge (style) 315
multi@parent (style) 136
multi@phantom (style) 260
N
\newcommand 591, 599, 609
\newcount 598
\newif 606, 900
\REWEORS 590, 1004
node@ttoks (autowrapped toks) 659
not custom tagging (codekey) 4
not debug multi phantoms (bool. reg.) 15
not debug multi phantoms (style) 288
(0}
other parents (keylist) 55
outer label (style) 19, 1101
outer labels (keylist register) 19, 1091
outer labels at (toks register) 19, 1095
P
\PackageError 629, 642, 1045
\PackageInfo 310, 311, 351, 352, 502, 521
\PackageWarning 9,
10, 43, 44, 289, 297, 369, 370, 508, 527, 884, 885
\path 1119
\pgfkeysvalueof 1125
\pgfakeys 1018
\pgfsys@begin@text 538
\pgfsys@end@texti..... 539
plugs:
tagsupport/forest/inittag 427
tagsupport/forest/setup alt 446
tagsupport/forest/tag alt 455
tagsupport/forest/tag/mmz alt 793
pretty nice empty nodes (style) 17, 20

forest-lib-ext. multi

\Prop_clear:Ct 923
\prop_get:NnN 983
\Prop_log:cC . ..o 998
\prop_map_function:cN 948
\PTOP_NEW:C . ..t ittt et e 916
\prop_new:N 911
\prop_put_from_keyval:ce 930
\prop_put_from_keyval:Nn 1002
\PrOp_TremovVe:Cloowuuunmennon.. 962
\prop_remove:Nn 986
\prop_set_eq:cN 973
\prop_set_eq:Nc 968
\prop_to_keyval:N 1001
\property_record:ee 563, 800
\property_ref:ee 401, 404
\property_ref:nn 864

\ProvidesForestLibrary 3, 4, 37, 38, 363, 364, 878, 879

Q
\g_no_value 940, 952, 978
R
redeclare tagging keylist (code key) 1009
\relax 481, 798
S
\seq new:N 912
\SetDefaultHookLabel 380, 895
\ShowTagging 554
\socket_assign_plug:nn 438, 439, 440, 535, 570, 572
\socket_get_plug:nN 498, 902
\socket_if_plug_exist:nnTF 499, 518
\socket_new:nn 420, 421, 422, 423
\socket_new_plug:nnn 427, 446, 455, 794
\socket_use:n 441, 537
\socket_use:nnn 574, 575
sockets:
tagsupport/forest/init 420
tagsupport/forest/setup 420
tagsupport/forest/tag 420
tagsupport/forest/tag/mmz 420
stages: o
tag tree stage L. 4
steps:
c foster parent 15, 77
c fosterling 15, 77
every foster parent 15, 77
every fosterling 15, 77
foster parents, 15, 77
fosterlings 15, 77
\str_if_eq:eeT 495, 515
\str_if_eq:nnTF 952
\str_mew:N 385
\str_set_eq:cN 906
styles:
+also parent 15, 226
add parent L. 275
align middle child 18, 1073
align middle children 18, 1073

also parent 15, 226
also parent+ 15, 226
debug multi phantoms 288
debug@multi 275
debug@multi@option 275
debug@multi@register 275
forestext utils debug 1006
multi 13, 99
multi@add@parent 188
multi@also@parent 125
multi@forked@edge 315
multi@parent 136
multi@phantom 260
not debug multi phantoms 288
outer label 19, 1101
pretty nice empty nodes 17, 20
T
tag nodes (tagging keylist) 4, 654
tag nodes uses (choice key) 5, 705
tag tree stage (stage) 4
tag tree uses (choicekey) 5, 772
\tag_get:n 469, 835
\tag_if_active:T 854
\tag_if_active:TF 482
\tag_mc_begin:in 462, 826
\tag_mc_begin _pop:n 558, 846
\tag_mc_end: 556, 844
\tag_mc_end_push: 437, 811
\tag_resume:n 425, 443, 552
\tag_socket_use:n 434, 808
\tag_struct_begin:n 457, 812
\tag_struct_end: 557, 845
\tag_struct_gput:ene 468, 834
\tag_suspend:n 424, 442, 551
\tagforest@debug@typeout

- 490, 494, 497, 517, 534, 536, 606, 616, 769

\tagforest@id 463,
465, 475, 481, 563, 598, 798, 800, 829, 831, 841
\tagforest@init 579
\tagforest@tag@tree@tag 560, 788
\tagforest@toks 567, 590, 770
tagging (bool. reg.) 5
tagging keylist put (code key) 21, 1029
tagging keylist remove (code key) 21, 1029

tagging keylist remove key (code key) 21,1029
tagging keylists:

collate tags 4, 654

tag modes 4, 654
tagsupport/forest/init (socket) E
tagsupport/forest/inittag (plug) E
tagsupport/forest/setup (socket) 4270
tagsupport/forest/setup alt (plug) E
tagsupport/forest/tag (socket) 420
tagsupport/forest/tag alt (plug) 455
tagsupport/forest/tag/mmz (socket) 420
tagsupport/forest/tag/mmz alt (plug) @

forest-lib-ext. multi

55/ 55

\tex_endlinechar:D 868
\tex_savepos:D 562, 565, 799, 802
\text_purify:n 567
\the 463, 465, 475, 563, 567,
594, 602, 800, 829, 831, 841, 897, 1017, 1041, 1042
\tl_if_eq:NnT 984
\tl new:N 384, 910
\tl_set:Ne i 566
toks registers:
outer labels at 19, 1095
\typeout 276,

279, 284, 592, 600, 611, 915, 922, 929, 967,
982, 997, 1010, 1011, 1017, 1024, 1025, 1040, 1041

U
\USE:IC ..ttt 390, 474, 840
\useforestlibrary 381, 382
\USEHOOK . ..ot i ittt 1066, 1069
\usetikzlibrary 313
utils@has@outer@labels (bool. reg.) 1093
utils@outer@label (autowrapped toks) 1097
utils@outer@label@opts (keylist) 1090
X
\XEOKSAPD .« - v vt i 814, 821

	Contents
	1 Basic usage
	2 Tagging
	2.0.1 Customisation
	2.0.2 Custom plugs
	2.0.3 Complete control
	2.1 Workflow
	2.2 Example

	3 Multiple parents
	3.1 Creating multiple parents
	3.2 Connecting multiple parents

	4 Linguistics extensions
	5 Utilities
	5.1 Alignment
	5.2 Outer labels
	5.3 ‘Tagging’ keylists

	6 Implementation
	ext.ling
	ext.multi
	ext.tagging
	ext.utils
	7 Toks etc.
	8 ‘Tagging keylists’
	9 Styles
	Changes
	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	X

