
1

Apache based WebDAV
Server with LDAP and SSL

Saqib Ali, Offshore XML/XHTML Development
[http://www.xml-dev.com] <saqib@seagate.com>

Revision History
Revision v4.1.2 2003-10-17 sa

Added the SSL performance tuning section.
Revision v4.1.1 2003-09-29 sa

Updated the SSL section based on the feedback received from readers.
Revision v4.1.0 2003-09-02 sa

Updated the SSL section based on the feedback received from readers.
Revision v4.0.2 2003-08-01 sa

Minor updates to the Apache configure cmd line. /dev/random referenced in the SSL section.
Revision v4.0.1 2003-07-27 sa

Added more information to the SSL section.
Revision v4.0 2003-06-29 sa

Updated the HOWTO for Apache 2.0. Also the source is in XML

Abstract

.This document is an HOWTO on installing a Apache based WebDAV server with LDAP for authentication and
SSL encryption.

Table of Contents
Introduction .. 2

About this document .. 2
Contributions to the document ... 2
What is Apache? ... 3
What is WebDAV? ... 3
What is PHP? ... 3
What is mySQL? .. 3
What do we need? .. 3
Assumptions ... 4

Requirements .. 4
Basics ... 4
Apache 2.0.46 .. 4
OpenSSL ... 4
iPlanet LDAP Library .. 4
mod_auth_ldap ... 4
mySQL DB Engine ... 5
PHP .. 5

Installation ... 5
Pre-requisites .. 5
mySQL .. 6
Apache 2.0 ... 6
mod_auth_ldap ... 7
CERT DB for LDAPS:// .. 7

http://www.xml-dev.com
http://www.xml-dev.com

Apache based WebDAV
Server with LDAP and SSL

2

PHP .. 7
Configuring and Setting up the WebDAV services .. 8

Modifications to the /usr/local/apache/conf/httpd.conf 8
Creating a directory for DAVLockDB .. 8
Enabling DAV .. 9
Create a Directory called DAVtest ... 9
Restart Apache .. 10
WebDAV server protocol compliance testing ... 10

WebDAV server management .. 11
Restricting access to DAV shares ... 11
Restricting write access to DAV shares ... 12

Implementing and using SSL to secure HTTP traffic ... 13
Introduction to SSL ... 13
Test Certificates .. 16
Certificates for Production use ... 16
How to generate a CSR .. 16
Installing Server Private Key, and Server Certificate .. 17
Removing passphrase from the RSA Private Key .. 19
SSL Performance Tuning .. 20

A. HTTP/HTTPS Benchmarking tools .. 21
B. Hardware based SSL encryption solutions ... 21
C. Certificate Authorities .. 21
Glossary of PKI Terms ... 22

Introduction
The Objective of this document in to Setup a Apache + mySQL + PHP + WebDAV based Web Application
Server, that uses LDAP for Authentication. The documentation will also provide details on the encrypting
LDAP transactions.

Note:

If you encounter any problems installing Apache or any of the modules please feel free to contact
me @ <saqib@seagate.com>

About this document
This document was originally written in 2001. Since then many updates and new additions have been
made. Thanks to all the people who submitted updates and corrections.

The XML source of this document is available at http://www.xml-dev.com:8080/cocoon/mount/doc-
book/Apache-WebDAV-LDAP-HOWTO.xml.

The latest version of the document is available at http://www.xml-dev.com:8080/cocoon/mount/doc-
book/Apache-WebDAV-LDAP-HOWTO.html.

Contributions to the document
If you like to contribute to the HOWTO, you can d/l the XML source from http://www.xml-dev.com:8080/
cocoon/mount/docbook/Apache-WebDAV-LDAP-HOWTO.xml , and send in the updated source to
saqib@seagate.com ALONG WITH YOUR NAME IN THE LIST OF AUTHORS AND REVISION HIS-
TORY :). That makes it easier for me contact the person if there are any updates/corrections. Thanks.

http://www.xml-dev.com:8080/cocoon/mount/docbook/Apache-WebDAV-LDAP-HOWTO.xml
http://www.xml-dev.com:8080/cocoon/mount/docbook/Apache-WebDAV-LDAP-HOWTO.xml
http://www.xml-dev.com:8080/cocoon/mount/docbook/Apache-WebDAV-LDAP-HOWTO.html
http://www.xml-dev.com:8080/cocoon/mount/docbook/Apache-WebDAV-LDAP-HOWTO.html
http://www.xml-dev.com:8080/cocoon/mount/docbook/Apache-WebDAV-LDAP-HOWTO.xml
http://www.xml-dev.com:8080/cocoon/mount/docbook/Apache-WebDAV-LDAP-HOWTO.xml

Apache based WebDAV
Server with LDAP and SSL

3

What is Apache?
The Apache HTTP Server is an open-source HTTP server for modern operating systems including UNIX
and Windows NT. It provides HTTP services in sync with the current HTTP standards.

Thei Apache WebServer is available for free download from http://httpd.apache.org/

What is WebDAV?
WebDAV stands for Web enabled Distributed Authoring and Versioning. It provides a collaborative en-
vironment for users to edit/manage files on web-servers. Technically DAV is an extension to the http
protocol.

Here is a brief description of the extensions provided by DAV:

Overwrite Protection: Lock and Unlock mechanism to prevent the "lost update problem". DAV protocol
support both shared and exclusive locks.

Properties: Metadata (title, subject, creater, etc)

Name-space management: Copy, Rename, Move and Deletion of files

Access Control: Limit access to various resources. Currently DAV assumes access control is already in
place, and does not provide strong authentication mechanism.

Versioning: Revision control for the documents. Versioning is not implemented yet.

What is PHP?
PHP (recursive acronym for "PHP: Hypertext Preprocessor") is a widely-used Open Source general-pur-
pose scripting language that is especially suited for Web development and can be embedded into HTML.

PHP is available from http://www.php.net

What is mySQL?
MySQL, the most popular Open Source SQL database, is developed, distributed, and supported by MySQL
AB

mySQL DB Engine can be downloaded from http://www.mysql.com/

What do we need?
The tools needed to achieve this objective are:

i. C Compiler e.g. GCC

ii. Apache 2 Web Server

iii.LDAP Module for Apache

iv. iPlanet LDAP lib files

http://httpd.apache.org/
http://www.php.net
http://www.mysql.com/

Apache based WebDAV
Server with LDAP and SSL

4

v. SSL engine

vi. PHP

vii.mySQL DB Engine

Note:

All of these packages are free and are available for download on the net.

Assumptions
This document assumes that you have the following already installed on your system.

i. gzip or gunzip - available from http://www.gnu.org

ii. gcc and GNU make - available from http://www.gnu.org

Requirements
You'll have to download and compile several packages. This document will explain the compilation
process, but you should be fimiliar with installing from source code.

Basics
You will need a machine running Solaris / Linux and GCC Compiler. GNU gnzip and GNU tar is also
needed.

Apache 2.0.46
Apache is the HTTP server, it will be used to run the Web Application Server. Please download the Apache
2.0.46 source code from http://www.apache.org/dist/httpd/.

OpenSSL
You will need to download the OpenSSL from http://www.openssl.org/source/ . Please download the latest
version. OpenSSL installation will be used for SSL libraries for compiling mod_ssl with Apache, and for
managing SSL certificates on the WebServer. Please download the OpenSSL source code gzipped file
into /tmp/downloads

iPlanet LDAP Library
Download the iPlanet LDAP SDK from http://wwws.sun.com/software/down-
load/products/3ec28dbd.html. We will use iPlanet LDAP SDK, because it includes libraries for ldaps://
(LDAP over SSL)

mod_auth_ldap
mod_auth_ldap will be used for compiling LDAP support into Apache. Please download mod_auth_ldap
from http://www.muquit.com/muquit/software/mod_auth_ldap/mod_auth_ldap_apache2.html

http://www.gnu.org
http://www.gnu.org
http://www.apache.org/dist/httpd/
http://www.openssl.org/source/
http://wwws.sun.com/software/download/products/3ec28dbd.html
http://wwws.sun.com/software/download/products/3ec28dbd.html
http://www.muquit.com/muquit/software/mod_auth_ldap/mod_auth_ldap_apache2.html

Apache based WebDAV
Server with LDAP and SSL

5

mySQL DB Engine
Download the appropriate mySQL build for your platform from http://www.mysql.com/down-
loads/index.html

PHP
Download the PHP source code from http://www.php.net/downloads.php

Installation
First we hve take care of the few pre-requisites, and then we will get into the main installtion.

Pre-requisites
The application server as we plan to install, requires the SSL libraries and LDAP libraries. SSL engine is
also required for managing the SSL certs for Apache 2.x

iPlanet LDAP SDK

Become root by using the su command:

$ su -

Create the /usr/local/iplanet-ldap-sdk.5 directory. Copy the ldapcs-
dk5.08-Linux2.2_x86_glibc_PTH_OPT.OBJ.tar.gz form /tmp/downloads to /usr/
local/iplanet-ldap-sdk.5 directory.

mkdir /usr/local/iplanet-ldap-sdk.5
cp /tmp/downloads/ldapcsdk5.08-Linux2.2_x86_glibc_PTH_OPT.OBJ.tar /usr/local/iplanet-ldap-sdk.5
cd /usr/local/iplanet-ldap-sdk.5
tar -xvf ldapcsdk5.08-Linux2.2_x86_glibc_PTH_OPT.OBJ.tar

Now you should have all the required iPlanet LDAP lib files in the correct directory

OpenSSL Engine

Next we need to install the OpenSSL Engine

OpenSSL is an open source implementation of the SSL/TLS protocol. It is required to create and manage
SSL certificates on the webserver. The installion is also necessary for the lib files that will be used by the
SSL module for apache.

Change to the directory where you placed the OpenSSL source code files

 # cd /tmp/download
gzip -d openssl.x.x.tar.gz
tar -xvf openssl.x.x.tar
cd openssl.x.x
make
make test

http://www.mysql.com/downloads/index.html
http://www.mysql.com/downloads/index.html
http://www.php.net/downloads.php

Apache based WebDAV
Server with LDAP and SSL

6

make install

Upon successful completion of the make install the openssl binaries should reside in /usr/local/ssl

mySQL
Installaing mySQL is quite simple. The downloaded binaries have to be place in appropriate directory.

We start creating a user:group for mysql daemon, and copying the files to appropriate directories.

 # groupadd mysql
useradd -g mysql mysql
cd /usr/local
gunzip < /path/to/mysql-VERSION-OS.tar.gz | tar xvf -
ln -s full-path-to-mysql-VERSION-OS mysql

Next run the install_db script, and change permission on the files

 # cd mysql
scripts/mysql_install_db
chown -R mysql .

Starting mySQL

Now start the mySQL server to verify the installation

 # bin/mysqld_safe --user=mysql &

Verify mySQL daemon is running, by using the ps -ef command. You should see the following output:

ps -ef | grep mysql
root 3237 1 0 May29 ? 00:00:00 /bin/sh bin/safe_mysqld
mysql 3256 3237 0 May29 ? 00:06:58 /usr/local/mysql/bin/mysqld --defaults-extra-file=/usr/local/mysql/data/my.cnf --basedir=/usr/local/mysql --datadir=/usr/local/mysql/data --user=mysql --pid-file=/usr/local/mysql/data/downloa

Stopping mySQL

To stop the MySQL server, follow the instructions below

cd /usr/local/mysql
./bin/mysqladmin -u root -p shutdown

Locating Data Directory

mySQL deamon stores all the information in a direcory called "Data Directory". If you followed the instal-
lation instructions above, your Data Directory should be located under /use/local/mysql/data.

To locate where your Data Directory is located, use the mysqladmin utility as follows:

/usr/local/mysql/bin/mysqladmin variables -u root --password={your_password} | grep datadir

Apache 2.0
Start by setting some FLAGS for the compiler

Apache based WebDAV
Server with LDAP and SSL

7

export LDFLAGS="-L/usr/local/iplanet-ldap-sdk.5/lib/ -R/usr/local/iplanet-ldap-sdk.5/lib/:/usr/local/lib"
export CPPFLAGS="-I/usr/local/iplanet-ldap-sdk.5/include"

Next UNTAR the apache 2.0 source files, and execute the configure script.

cd /tmp/download
gzip -d httpd-2.0.46.tar.gz
tar -xvf httpd-2.0.46.tar
cd httpd-2.0.46
#./configure --enable-so --with-ssl --enable-ssl --enable-rewrite --enable-dav

Next run the make command

make
make install

Starting Apache

/usr/local/apache2/bin/apachectl start

Stopping Apache

/usr/local/apache2/bin/apachectl stop

mod_auth_ldap
Untar modauthldap_apache2.tar.gz

cd /tmp/download
gzip -d modauthldap_apache2.tar.gz
tar -xvf modauthldap_apache2.tar
cd modauthldap_apache2

Now configure and install mod_auth_ldap

./configure --with-apxs=/usr/local/apache2/bin/apxs --with-ldap-dir=/usr/local/iplanet-ldap-sdk.5/
make
make install

CERT DB for LDAPS://
You will also need to get the cert7.db and key7.db from http://www.xml-dev.com/xml/key3.db and http://
www.xml-dev.com/xml/cert7.db and place it in the /usr/local/apache2/sslcert/directory.

PHP
Unzip the PHP Source Files

gzip -d php-xxx.tar.gz
tar -xvf php-xxx.tar

Configure and run the make command

cd php-xxx

http://www.xml-dev.com/xml/key3.db
http://www.xml-dev.com/xml/cert7.db
http://www.xml-dev.com/xml/cert7.db

Apache based WebDAV
Server with LDAP and SSL

8

./configure --with-mysql --with-apxs=/usr/local/apache2/bin/apxs

Compile the source code

make
make install

Copy the php.ini file to the appropriate directory

cp php.ini-dist /usr/local/lib/php.ini

Configuring and Setting up the WebDAV ser-
vices

Now for the easy part. In this section we will WebDAV enable a directory under Apache root.

Modifications to the /usr/local/apache/conf/
httpd.conf

Please verify that the following Apache directive appears in the /usr/local/apache/conf/
httpd.conf :

 Addmodule mod_dav.c

If it does not please add it. This directive informs Apache about DAV capability. The directive must be
placed outside any container.

Next we must specify where Apache should store the DAVLockDB file. DAVLockDB is a lock database
for the WebDAV. This directory should be writable by the httpd process.

I store the DAVLock file under /usr/local/apache/var. I use this directory for other purposes
as well. Please add the following line to your /usr/local/apache/conf/httpd.conf to specify
that the DAVLockDB file will be under /usr/local/apache/var :

 DAVLockDB /usr/local/apache/var/DAVLock

The directive must be placed outside any container.

Creating a directory for DAVLockDB
As mentioned above a directory must be created for DAVLockDB that can be written by the web server
process. Usually web server process runs under the user 'nobody' . Please verify this for your system using
the command:

ps -ef | grep httpd

Under /usr/local/apache create the directory and set the permissions on it using the following
commands:

 # cd /usr/local/apache

Apache based WebDAV
Server with LDAP and SSL

9

 # mkdir var
 # chmod -R 755 var/
 # chown -R nobody var/
 # chgrp -R nobody var/

Enabling DAV
Enabling DAV is a trivial task. To enable DAV for a directory under Apache root, just add the following
directive in the container for that particular directory:

 DAV On

This directive will enable DAV for the directory and its sub-directories.

The following is a sample configuration that will enable WebDAV and LDAP authentication on
/usr/local/apache/htdocs/DAVtest. Place this in the /usr/local/apache/conf/
httpd.conf file.

 DavLockDB /tmp/DavLock
<Directory "/usr/local/apache2/htdocs/DAVtest">
Options Indexes FollowSymLinks
AllowOverride None
order allow,deny
allow from all
AuthName "SMA Development server"
AuthType Basic
LDAP_Debug On
#LDAP_Protocol_Version 3
#LDAP_Deref NEVER
#LDAP_StartTLS On
LDAP_Server you.ldap.server.com
#LDAP_Port 389
If SSL is on, must specify the LDAP SSL port, usually 636
LDAP_Port 636
LDAP_CertDbDir /usr/local/apache2/sslcert
Base_DN "o=SDS"
UID_Attr uid
DAV On
#require valid-user
require valid-user
#require roomnumber "123 Center Building"
#require filter "(&(telephonenumber=1234)(roomnumber=123))"
#require group cn=rcs,ou=Groups
</Directory>

Create a Directory called DAVtest
As mentioned in a earlier section, all DAV directories have to be writable by the WebServer process. In
this example we assume WebServer is running under username 'nobody'. This is usually the case. To check
httpd is running under what user, please use:

ps -ef | grep httpd

Apache based WebDAV
Server with LDAP and SSL

10

Create a test directory called 'DAVtest' under /usr/local/apache2/htdocs :

mkdir /usr/local/apache/htdocs/DAVtest

Change the permissions on the directory to make it is read-writable by the httpd process. Assuming the
httpd is running under username 'nobody', use the following commands:

 # cd /usr/local/apache/htdocs
 # chmod -R 755 DAVtest/
 # chown -R nobody DAVtest/
 # chgrp -R nobody DAVtest/

Restart Apache
Finally you must run the configuration test routine that comes with Apache to verify the syntax in
httpd.conf :

/usr/local/apache/bin/apachectl configtest

If you get error messages please verify that you followed all of the above mentioned steps correctly. If
you can not figure out the error message feel free to email me with the error message (saqib@seagate.com
[mailto:saqib@seagate.com]).

If the configtest is successful start the apache web-server:

/usr/local/apache/bin/apachectl restart

Now you have WebDAV enabled Apache Server with LDAP authentication and SSL encryption.

WebDAV server protocol compliance testing
It is very important that the WebDAV that we just implemented be fully complaint with the WebDAV-2
protocol. If it is not fully compatible, the client side WebDAV applications will not function properly.

To test the complaince we will use a tool called Litmus. Litmus is a WebDAV server protocol compliance
test suite, which aims to test whether a server is compliant with the WebDAV protocol as specified in
RFC2518.

Please download the Litmus source code from http://www.webdav.org/neon/litmus/ and place it in the /
tmp/downloads directory.

Then use gzip and tar to extract the files:

cd /tmp/downloads
gzip -d litmus-0.6.x.tar.gz
tar -xvf litmus-0.6.x.tar
cd litmus-0.6.x

Compiling and installing Litmus is easy:

./configure

mailto:saqib@seagate.com
mailto:saqib@seagate.com
http://www.webdav.org/neon/litmus/

Apache based WebDAV
Server with LDAP and SSL

11

make
make install

make install will install the Litmus binary files under /usr/local/bin and the help files under /
usr/local/man

To the test the complaince of the WebDAV server that you just installed, please use the following command

/usr/local/bin/litmus http://you.dav.server/DAVtest userid passwd

WebDAV server management
In this section we will discuss about the various management task - e.g. using LDAP for access control,
and working with DAV method on Apache

Most of the configuration changes for the DAV will have to done using the httpd.conf file. This file
is located at /usr/local/apache/conf/httpd.conf

httpd.conf is a text based configuration file that Apache uses. It can b editted using any text editor -
I preffer using vi. Please make backup copy of this file, before changing it.

After making changes to the httpd.conf the Apache server has to be restarted using the /usr/lo-
cal/apache/bin/apachectl restart command. However before restarting you test for the validity of the
httpd.conf by using the /usr/local/apache/bin/apachectl configtest comand.

Restricting access to DAV shares
In the previous section when we created the DAVtest share, we used the LDAP for authentication purposes.
However anyone who can authenticates using their LDAP useri/passwd will be able to access that folder.

Using the require directive in the httpd.conf file, we can limit access to certain individuals or groups of
individuals.

If we look at the DAVtest configuration from the previosu section:

 <Directory /usr/local/apache/htdocs/DAVtest>
 Dav On
 #Options Indexes FollowSymLinks

 AllowOverride None
 order allow,deny
 allow from all
 AuthName "LDAP_userid_password_required"
 AuthType Basic
 <Limit GET PUT POST DELETE PROPFIND PROPPATCH MKCOL COPY MOVE LOCK UNLOCK>
 Require valid-user
 </Limit>
 LDAP_Server ldap.server.com
 LDAP_Port 389
 Base_DN "o=ROOT"

 UID_Attr uid

Apache based WebDAV
Server with LDAP and SSL

12

 </Directory>

We see that the require is set to valid-user. Which means any valid authenticated user has access to this
folder.

Restricting access based on Individual UID(s)

LDAP UID can be used to restrict access to DAV folder.

require valid-user directive can be changed to require user 334455 445566

This will restrict access to individuals with UID 334455 and 445566. Anyone else will not be able to
access this folder.

Restricting access based on groups of individuals.

require can also be used to restrict access to groups of individuals. This can be either done using LDAP
groups or LDAP filters. The filter must be valid LDAP filter syntax.

Restricting write access to DAV shares
It maybe be required that the editting for the resources on the DAV shares be restricted to certain individual,
however anyone can view the resources. This can be easily done using the <Limit> tags in the httpd.conf
file

 <Directory /usr/local/apache/htdocs/DAVtest>
 Dav On
 #Options Indexes FollowSymLinks

 AllowOverride None
 order allow,deny
 allow from all
 AuthName "LDAP_userid_password_required"
 AuthType Basic
 <Limit GET PUT POST DELETE PROPFIND PROPPATCH MKCOL COPY MOVE LOCK UNLOCK>
 Require valid-user
 </Limit>
 LDAP_Server ldap.server.com
 LDAP_Port 389
 Base_DN "o=ROOT"

 UID_Attr uid
 </Directory>

You restrict write access to certain individuals by changing the <limit> to

 <Limit PUT POST DELETE PROPPATCH MKCOL COPY MOVE LOCK UNLOCK>
 Require 334455
 </Limit>

Basically we are limiting the PUT POST DELETE PROPPATH MKCOL COPY MOVE LOCK and UN-
LOCK to an individual who has the UID of 334455. Everyone else will be able to use the methods GET
and PROPFIND on the resources, but not any other method.

Apache based WebDAV
Server with LDAP and SSL

13

Implementing and using SSL to secure HTTP
traffic

Security of the data stored on a file server is very important these days. Compromised data can cost thou-
sands of dollars to company. In the last section, we compiled LDAP authentication module into the Apache
build to provide a Authentication mechanism. However HTTP traffic is very insecure, and all data is trans-
ferred in clear text - meaning, the LDAP authentication (userid/passwd) will be transmitted as clear text
as well. This creates a problem. Anyone can sniff these userid/passwd and gain access to DAV store. To
prevent this we have to encrypt HTTP traffic, essentially HTTP + SSL or HTTPS. Anything transferred
over HTTPS is encrypted, so the LDAP userid/passwd can not be easily deciphered. HTTPS runs on port
443. The resulting build from the last section's compilation process will have Apache to listen to both port
80 (normal HTTP) and 443 (HTTPS). If you are just going to use this server for DAV, then I will highly
suggest that you close port 80. In this section of the HOWTO I will provide some information regarding
SSL and maintaining SSL on a Apache HTTP server.

Introduction to SSL
SSL (Secure Socket Layer) is a protocol layer that exists between the Network Layer and Application
layer. As the name suggest SSL provides a mechanism for encrypting all kinds of traffic - LDAP, POP,
IMAP and most importantly HTTP.

The following is a over-simplified structure of the layers involved in SSL.

 +---+
 | LDAP | HTTP | POP | IMAP |
 +---+
 | SSL |
 +---+
 | Network Layer |
 +---+

Encryption algorithms used in SSL

There are three kinds of cryptographic techniques used in SSL: Public-Private Key, Symmetric Key, and
Digital Signature.

Public-Private Key Crytography - Initiating SSL connection: In this algorithm, encryption and de-
cryption is performed using a pair of private and public keys. The Web-server holds the private Key, and
sends the Public key to the client in the Certificate.

1. The client request content from the Web Server using HTTPS.

2. The web server responds with a Digital Certificate which includes the server's public key.

3. The client checks to see if the certificate has expired.

4. Then the client checks if the Certificate Authority that signed the certificate, is a trusted authority listed
in the browser. This explains why we need to get a certificate from a a trusted CA.

5. The client then checks to see if the Fully Qualified Domain Name (FQDN) of the web server matches
the Comman Name (CN) on the certificate?

Apache based WebDAV
Server with LDAP and SSL

14

6. If everything is successful the SSL connection is initiated.

Note:

Anything encrypted with Private Key can only be decrypted by using the Public Key. Similarly
anything encrypted using the Public Key can only be decrypted using the Private Key. There is a
common mis-conception that only the Public Key is used for encryption and Private Key is used
for decryption. This is not case. Any key can be used for encryption/decryption. However if one
key is used for encryption then the other key must be used for decryption. e.g. A message can not
encrypted and then decrypted using only the Public Key.

Using Private Key to encrypt and a Public Key to decrypt ensures the integrity of the sender
(owner of the Private Key) to the recipients. Using Public Key to encrypt and a Private Key to
decrypt ensures that only the inteded recipient (owner of the Private Key) will have access to the
data.(i.e. only the person who holds the Private Key will be able to decipher the message).

Symmetric Cryptography - Actual transmission of data: After the SSL connection has been established,
Symmetric cryptography is used for encrypting data as it uses less CPU cycles. In symmetric cryptography
the data can be encrypted and decrypted using the same key. The Key for symmetric cryptography is
exchanged during the initiation process, using Public Key Cryptography.

Message Digest The server uses message digest algoritm such as HMAC, SHA-1, MD5 to verify the
integrity of the transferred data.

Ensuring Authenticity and Integrity

Encryption Process

 Sender's Receiver's
 PrivateKey PublicKey
 ,-. ,-.
 ().......... ()..........
 `-' ''''|'|'|| `-' ''''''''||
 | | |
 | | |
 .----------. | | .----------. | .----------.
 | | V | | | V | |
 |Clear Text|--------->|CipherText|--------->|CipherText|
 | | Step1 | 1 | Step2 | 2 |\
 `----------' | `----------' `----------' \ __
 | | \ [_'
 | | step5 \ |
 |Step3 | __ --|--
 | | _.--' |
 V | _..-'' / \
 .---------. | .---------. _..-'' Receiver
 | SHA 1 | V | Digital | _..-''
 |MsgDigest|--------->|Signature|' _
 `---------' Step4 `---------' _ (_)
 _____ ____ ____ ____ _ _ ____ _| |_ _ ___ ____
 | ___ | _ \ / ___)/ ___) | | | _ (_ _) |/ _ \| _ \
 | ____| | | ((___| | | |_| | |_| || |_| | |_| | | | |
 |_____)_| |_|____)_| __ | __/ __)_|___/|_| |_|
 (____/|_|

Apache based WebDAV
Server with LDAP and SSL

15

• Step1: In this step the Original "Clear Text" message is encrypted using the Sender's Private Key, which
results in Cipher Text 1. This ensures the Authenticity of the sender.

• Step2: In this step the "CipherText 1" is encrypted using Receiver's Public Key resulting in "CipherText
2". This will ensure the Authenticity of the Receiver i.e. only the Receiver can decipher the Messsage
using his Private Key.

• Step3: Here the SHA1 Message Digest of the "Clear Text" is created.

• Step4: SHA1 Message Digest is then encrypted using Sender's Private Key resulting in the Digital
Signature of the "ClearText". This Digital Signature can be used by the receiver to ensure the Integrity
of the message and authenticity of the Sender.

• Step5: The "Digital Signature" and the "CipherText 2" are then send to the Receiver.

Decryption Process

 Receiver's Sender's
 PrivateKey PublicKey
 ,-. ,-.
 ().......... ()..........
 `-' ''''''''|| `-' '''''''|||
 | | |
 | | |
 .----------. | .----------. | | .----------.
 | | V | | V | | | .---#1----.
 |CipherText|--------->|CipherText|--------->|ClearText |------>| SHA 1 |
 | 2 | Step1 | 1 | Step2 | | | Step3 |MsgDigest|
 `----------' `----------' | `----------' `---------'
 | ||
 | ||Step5
 | ||
 | ||
 .---------. | .---------.
 | Digital | V | SHA 1 |
 |Signature|---------------------->|MsgDigest|
 _ `---------' Step4 _ `---#2----'
 | | _ (_)
 __| |_____ ____ ____ _ _ ____ _| |_ _ ___ ____
 / _ | ___ |/ ___)/ ___) | | | _ (_ _) |/ _ \| _ \
 ((_| | ____((___| | | |_| | |_| || |_| | |_| | | | |
 ____|_____)____)_| __ | __/ __)_|___/|_| |_|
 (____/|_|

• Step1: In this step the "CipherText 2" message is decrypted using the Receiver's Private Key, which
results in Cipher Text 1.

• Step2: In this step the "CipherText 1" is decrypted using Sender's Public Key resulting in "ClearText".

• Step3: Here the SHA1 Message Digest of the "Clear Text" is created.

• Step4: The "Digital Signature" is then decrypted using Sender's Public Key, resulting the "SHA 1 MSG
Digest".

Apache based WebDAV
Server with LDAP and SSL

16

• Step5: The "SHA1 MsgDigest #1" is then compared against "SHA1 MsgDigest #2". If they are equal,
the data was not modified during transmission, and the integrity of the Original "Clear Text" has been
maintained

Test Certificates
While compiling Apache we created a test certificate. We used the makefile provided by mod_ssl to create
this custom Certificate. We used the command:

make certificate TYPE=custom

This certificate can be used for testing purposes.

Certificates for Production use
For production use you will need a certificate from a Certificate Authority (hereafter CA). Certificate
Authorities are certificate vendors, who are listed as a Trusted CA in the user's browser. As mentioned
in the Encryption Algorithms section, if the CA is not listed as a trusted authority, your user will get a
warning message when trying to connect to a secure location.

Similarly the test certificates will also cause a warning message to appear on the user's browser.

How to generate a CSR
CSR or Certificate Signing Request must be sent to the trusted CA for signing. This section discusses
howto create a CSR, and send it to the CA of your choice. # openssl req command can be used to a CSR
as follows:

cd /usr/local/apache/conf/
/usr/local/ssl/bin/openssl req -new -nodes -keyout private.key -out public.csr
Generating a 1024 bit RSA private key
............++++++
....++++++
writing new private key to 'private.key'

You are about to be asked to enter information that will be incorporated
into your certificate request.
What you are about to enter is what is called a Distinguished Name or a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter '.', the field will be left blank.

Country Name (2 letter code) [AU]:US
State or Province Name (full name) [Some-State]:California
Locality Name (eg, city) []:San Jose
Organization Name (eg, company) [Internet Widgits Pty Ltd]:Seagate
Organizational Unit Name (eg, section) []:Global Client Server
Common Name (eg, YOUR name) []:xml.seagate.com
Email Address []:saqib@seagate.com

Please enter the following 'extra' attributes
to be sent with your certificate request
A challenge password []:badpassword

Apache based WebDAV
Server with LDAP and SSL

17

An optional company name []:

"PRNG not seeded"

If you do not have /dev/random on your system you will get a "PRNG not seeded" error
message. In that case you can use the following command:

/usr/local/ssl/bin/openssl req -rand some_file.ext -new -nodes -keyout private.key -out public.csr

Replace some_file.ext with the name of a existing file on your file system. Any file can be spec-
ified. Openssl will use that file to generate the seed

Solaris 9 comes with /dev/random. However on Solaris you might have to install the 112438
[http://sunsolve.sun.com/pub-cgi/findPatch.pl?patchId=112438] patch to get the /dev/random

At this point you will be asked several questions about your server to generate the Certificate Singning
Request

Note: Your Common Name (CN) is the Fully Qualified DNS (FQDN) name of your webserver e.g.
dav.server.com . If you put in anything else, it will NOT work. Remember the password that you use, for
future reference.

Once the process is complete, you will have private.key and a public.csr . You will need to
submit the public.csr to the Certification Authority. At this pointe the public.key is not encrypted.
To encrypt:

 # mv private.key private.key.unecrpyted
/usr/local/ssl/bin/openssl rsa -in private.key.unecrpyted -des3 -out private.key

Installing Server Private Key, and Server Certificate
Once the Certification Authority processes your request, they will send an encoded certificate (Digital
Certificate) back to you. The Digital Certificate is in the format defined by X.509 v3. The following shows
the structure of a typical X509 v3 Digital Certificate

• Certificate

• Version

• Serial Number

• Algorithm ID

• Issuer

• Validity

• • Not Before

• Not After

• Subject

• Subject Public Key Info

• • Public Key Algorithm

http://sunsolve.sun.com/pub-cgi/findPatch.pl?patchId=112438
http://sunsolve.sun.com/pub-cgi/findPatch.pl?patchId=112438

Apache based WebDAV
Server with LDAP and SSL

18

• RSA Public Key

• Extensions

• Certificate Signature Algorithm

• Certificate Signature

Verifying a Digital Certificate

To verify a X.509 Certificate use the following command

openssl verify server.crt
server.crt: OK

Where server.crt is the name of the file that contains the Digital Certificate

Viewing the contents of a Digital Certificate

The contents of a Digital Certificate can be viewed by using the # openssl x509 command as follows:

openssl x509 -text -in server.crt
Certificate:
 Data:
 Version: 3 (0x2)
 Serial Number: 312312312 (0x0)
 Signature Algorithm: md5WithRSAEncryption
 Issuer: C=US, O=GTE Corporation, CN=GTE CyberTrust Root
 Validity
 Not Before: Feb 8 03:25:50 2000 GMT
 Not After : Feb 8 03:25:50 2001 GMT
 Subject: C=US, ST=New York, L=Pelham, O=xml-dev, OU=web, CN=www.xml-dev.com/Email=saqib@xml-dev.com
 Subject Public Key Info:
 Public Key Algorithm: rsaEncryption
 RSA Public Key: (1024 bit)
 Modulus (1024 bit):

 Exponent: 65537 (0x10001)
 Signature Algorithm: md5WithRSAEncryption

Modifying the httpd.conf to Install the Certificates

You will need to place this certificate on the server, and tell Apache where to find it.

For this example, the Private Key is placed in the /usr/local/apache2/conf/ssl.key/ direc-
tory, and the Sever Certificate is placed in the /usr/local/apache2/conf/ssl.crt/.

Copy the file received from the Certification to a file called server.crt in the /usr/lo-
cal/apache2/conf/ssl.crt/.

Apache based WebDAV
Server with LDAP and SSL

19

And place the private.key generated in the previous step in the /usr/local/apache2/conf/
ssl.key/

Then modify the /usr/local/apache2/conf/ssl.conf to point to the correct Private Key and
Server Certificate files:

Server Certificate:
Point SSLCertificateFile at a PEM encoded certificate. If
the certificate is encrypted, then you will be prompted for a
pass phrase. Note that a kill -HUP will prompt again. Keep
in mind that if you have both an RSA and a DSA certificate you
can configure both in parallel (to also allow the use of DSA
ciphers, etc.)
SSLCertificateFile /usr/local/apache2/conf/ssl.crt/server.crt
#SSLCertificateFile /usr/local/apache2/conf/ssl.crt/server-dsa.crt

Server Private Key:
If the key is not combined with the certificate, use this
directive to point at the key file. Keep in mind that if
you've both a RSA and a DSA private key you can configure
both in parallel (to also allow the use of DSA ciphers, etc.)
SSLCertificateKeyFile /usr/local/apache2/conf/ssl.key/private.key
#SSLCertificateKeyFile /usr/local/apache2/conf/ssl.key/server-dsa.key

Removing passphrase from the RSA Private Key
RSA Private Key stored on the webserver is usually encrypted, and you need a passphrase to parse the
file. That is why you are prompted for a passphrase when start Apache with modssl:

apachectl startssl
Apache/1.3.23 mod_ssl/2.8.6 (Pass Phrase Dialog)
Some of your private key files are encrypted for security reasons.
In order to read them you have to provide us with the pass phrases.
Server your.server.dom:443 (RSA)
Enter pass phrase:

Encrypting the RSA Private Key is very important. If a cracker gets hold of your "Unencrypted RSA
Private Key" he/she can easily impersonate your webserver. If the Key is encrypted, the cracker can not
do anything without brute forcing the passphrase. Use of a strong (ie: long) passphrase is encouraged.

However encrypting the Key can sometimes be nuisance, since you will be prompted for a passphrase
everytime you start the web-server. Especially if you are using rc scripts to start the webserver at boot
time. The prompt for a passphrase will stop the boot process, waiting for your input.

You can get rid of the passphrase prompt easily by decrypting the Key. However make sure that no one can
hold of this Key. I would recommend Hardening and Securing guidelines be followed before decrypting
the Key on the webserver.

To decrypt the Key:

First make a copy of the encrypted key

cp server.key server.key.cryp

Apache based WebDAV
Server with LDAP and SSL

20

Then re-write the key with encryption. You will be prompted for the original encrypted Key passphrase

/usr/local/ssl/bin/openssl rsa -in server.key.cryp -out server.key
read RSA key
Enter PEM pass phrase:
writing RSA key

One way to secure the decrypted Private Key is to make readable only by the root:

chmod 400 server.key

SSL Performance Tuning

Inter Process SSL Session Cache

Apache uses a multi-process model, in which all the request are NOT handled by the same process. This
causes the SSL Session Information to be lost when a Client makes multiple requests. Multiple SSL
HandShakes causes lot of overhead on the webserver and the client. To avoid this, SSL Session Information
must be stored in a inter-process Session Cache, allowing all the processes to have access to the handshake
information. SSLSessionCache Directive the in /usr/local/apache2/conf/ssl.conf file can
be used to specify the location of the SSL Session Cache:

SSLSessionCache shmht:logs/ssl_scache(512000)
#SSLSessionCache shmcb:logs/ssl_scache(512000)
#SSLSessionCache dbm:logs/ssl_scache
SSLSessionCacheTimeout 300

Using dbm:logs/ssl_scache creates the Cache as DBM hashfile on the local disk.

Using shmht:logs/ssl_scache(512000) creates the Cache in Shared Memory Segment

shmht vs shmcb

shmht: uses a Hash Table to Cache the SSL HandShake Information in the Shared Memory

shmht: uses a Cyclic Buffer to Cache the SSL HandShake Informationin the Shared Memory

Note:

Not all platforms/OS support creation of Hash table in the Shared Memory. So dbm:logs/
ssl_scache must be used instead

Verifying SSLSession Cache

To verify if the SSLSessionCache is working properly, you can use the openssl utility with the -reconnect
as follows:

openssl s_client -connect your.server.dom:443 -state -reconnect

CONNECTED(00000003)
.......

Apache based WebDAV
Server with LDAP and SSL

21

.......
Reused, TLSv1/SSLv3, Cipher is EDH-RSA-DES-CBC3-SHA
SSL-Session:
.....
Reused, TLSv1/SSLv3, Cipher is EDH-RSA-DES-CBC3-SHA
SSL-Session:
.....
Reused, TLSv1/SSLv3, Cipher is EDH-RSA-DES-CBC3-SHA
SSL-Session:
.....
Reused, TLSv1/SSLv3, Cipher is EDH-RSA-DES-CBC3-SHA
SSL-Session:
.....
Reused, TLSv1/SSLv3, Cipher is EDH-RSA-DES-CBC3-SHA
SSL-Session:
.....

-reconnect forces the s_client to connect to the server 5 times using the same SSL session ID. You should
see 5 attempts of Reusing the same Session-ID as shown above.

A. HTTP/HTTPS Benchmarking tools
The following is a list of some of the OpenSource BenchMarking tools for WebServers

i. SSLswamp [http://distcache.sourceforge.net/] - For stress-testing/benchmarking connction to a SSL
enable server

ii. HTTPERF [http://www.hpl.hp.com/personal/David_Mosberger/httperf.html] - A Tool for Measuring
Web Server Performance

iii. ab [http://httpd.apache.org/docs-2.1/en/programs/ab.html] - Apache HTTP server benchmarking tool

B. Hardware based SSL encryption solutions
The following is a Hardware Based SSL encryption solution available:

i. CHIL (Cryptographic Hardware Interface Library) [http://www.ncipher.com] by nCipher

ii. ab [http://httpd.apache.org/docs-2.1/en/programs/ab.html] - Apache HTTP server benchmarking tool

C. Certificate Authorities
The following is list of Certificate Authorities that are trusted by the various browsers:

i. Baltimore [http://www.baltimore.com/]

ii. Entrust [http://www.entrust.com/]

iii.GeoTrust [http://www.globalsign.net/]

iv. Thawte [http://www.thawte.com]

http://distcache.sourceforge.net/
http://distcache.sourceforge.net/
http://www.hpl.hp.com/personal/David_Mosberger/httperf.html
http://www.hpl.hp.com/personal/David_Mosberger/httperf.html
http://httpd.apache.org/docs-2.1/en/programs/ab.html
http://httpd.apache.org/docs-2.1/en/programs/ab.html
http://www.ncipher.com
http://www.ncipher.com
http://httpd.apache.org/docs-2.1/en/programs/ab.html
http://httpd.apache.org/docs-2.1/en/programs/ab.html
http://www.baltimore.com/
http://www.baltimore.com/
http://www.entrust.com/
http://www.entrust.com/
http://www.globalsign.net/
http://www.globalsign.net/
http://www.thawte.com
http://www.thawte.com

Apache based WebDAV
Server with LDAP and SSL

22

v. TrustCenter [http://www.trustcenter.de/]

Glossary of PKI Terms
A

Asymmetric Cryptography In this Cryptography a Key Pair - Private and Public Key is used.
Private Key is kept secret and the Public Key is Widely distributed.

C
Certificate A Data Record that contains the information as defined in the X.509

Format.

Certificate Authority (CA) Issuer of the Digital Certificate. Also validates the Identity of the End-
Entity that posseses the Digital Certificate.

Certificate Signing Request
(CSR)

Certificate Signing Request (CSR) is what you send to a Certifiate
Authority (CA) to get enrolled. A CSR contains the Public Key of the
End-Entity that is a requesting the Digital Certificate.

Common Name (CN) Common Name is the name of the End-Entity e.g. Saqib Ali. If the
End-Entity is a WebServer the CN is the Fully Qualified Domain
Name (FQDN) of the WebServer

D
Digital Certificate A certificate that binds a Public Key to a Subject (end-entity). This

certificate also contains other indentifying information about the sub-
ject as defined in the X.509 Format. It is signed by Issuing CA, using
CA's pivate key. e.g. of a digital certificate

Digital Signature A Digital Signature is created by signing the Message Digest (Mes-
sage Hash) using the Private Key. It ensures the Identity of the Sender,
and the Integrity of the Data.

E
End-Entity An entity that participates in the PKI. Usually a Server, Service,

Router, or a Person. A CA is not a End-Entity. An RA is an End-En-
tity to the CA

H
Hash A hash is Hexadecimal number generated from a string of text such

that, no two different strings can produce the same hash.

HMAC: Keyed Hashing for
Message Authentication

HMAC is an implementation of Message Authentication Code Algo-
rithm.

http://www.trustcenter.de/
http://www.trustcenter.de/

Apache based WebDAV
Server with LDAP and SSL

23

M
Message Authentication Code Similar to a Message Digest (Hash/Fingerprint), except the Shared Se-

cret Key is used in the process of calculating the Hash. Since a shared
secret key is used, an attacker can not change the Message Digest.
However the shared secret key has to be first communicated to the
participating entities, unlike Digital Signature where Message Digest
is signed using the Private Key. HMAC is an example of a Message
Authentication Code Algorithm.

Message Digest 5 - MD5 Message Digest 5 (MD5) is a 128-bit one-way hash function

P
Private Key Private Key is the Key in Asymmetric Cryptography that is kept secret

by the owner (End-Entity). Can be used for encryption or decryption

Public Key Public Key is the Key in Asymmetric Cryptography that is widely
distributed. Can be used for encryption or decryption

Public Key Infrastructure (PKI) Public Key Infrastructure

S
SHA-1: Secure Hash Algorithm Secure Hash Algorithm (SHA-1) is a 160-bit one-way hash function.

Maximum message is 2^64 bits.

Secure Socket Layer (SSL) Secure Socket Layer (SSL) is a security protocol that provides authen-
tication (Digital Certificate), confidentiality (encryption), and data in-
tegrity (Message Digest - MD5, SHA etc).

Symmetric Cryptography In this cryptography the message the encrypted and decrypted by the
same key. (((n^2-n))/2) keys are required for n users who want to par-
ticipate in this system of cryptography.

	Apache based WebDAV Server with LDAP and SSL
	Table of Contents
	Introduction
	About this document
	Contributions to the document
	What is Apache?
	What is WebDAV?
	What is PHP?
	What is mySQL?
	What do we need?
	Assumptions

	Requirements
	Basics
	Apache 2.0.46
	OpenSSL
	iPlanet LDAP Library
	mod_auth_ldap
	mySQL DB Engine
	PHP

	Installation
	Pre-requisites
	iPlanet LDAP SDK
	OpenSSL Engine

	mySQL
	Starting mySQL
	Stopping mySQL
	Locating Data Directory

	Apache 2.0
	Starting Apache
	Stopping Apache

	mod_auth_ldap
	CERT DB for LDAPS://
	PHP

	Configuring and Setting up the WebDAV services
	Modifications to the /usr/local/apache/conf/httpd.conf
	Creating a directory for DAVLockDB
	Enabling DAV
	Create a Directory called DAVtest
	Restart Apache
	WebDAV server protocol compliance testing

	WebDAV server management
	Restricting access to DAV shares
	Restricting access based on Individual UID(s)
	Restricting access based on groups of individuals.

	Restricting write access to DAV shares

	Implementing and using SSL to secure HTTP traffic
	Introduction to SSL
	Encryption algorithms used in SSL
	Ensuring Authenticity and Integrity

	Test Certificates
	Certificates for Production use
	How to generate a CSR
	Installing Server Private Key, and Server Certificate
	Verifying a Digital Certificate
	Viewing the contents of a Digital Certificate
	Modifying the httpd.conf to Install the Certificates

	Removing passphrase from the RSA Private Key
	SSL Performance Tuning
	Inter Process SSL Session Cache
	Verifying SSLSession Cache

	A. HTTP/HTTPS Benchmarking tools
	B. Hardware based SSL encryption solutions
	C. Certificate Authorities
	Glossary of PKI Terms

