Xlib — C Language X Interface
X Window System Standard
X Version 11, Release 7

libX11 1.3.3

James Gettys

Cambridge Research Laboratory
Digital Equipment Corporation

Robert W Scheifler

Laboratory for Computer Science
Massachusetts Institute of Technology

with contributions from

Chuck Adams, Tektronix, Inc.
Vania Joloboff, Open Software Foundation
Hideki Hiura, Sun Microsystems, Inc.
Bill McMahon, Hewlett-Packard Company
Ron Newman, Massachusetts Institute of Technology
Al Tabayoyon, Tektronix, Inc.
Glenn WidenerTektronix, Inc.

Shigeru Yamada, Fujitsu OSSI

The X Windav System is a trademark of The Open Group.
TekHVC is a trademark of Tektronix, Inc.

Copyright © 1985, 1986, 1987, 1988, 1989, 1990, 1991, 1994, 1996, 2002 The Open Group

Permission is hereby granted, free of charge, ygarson obtaining a cgpof this software and associated documenta-
tion files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The abwe mpyright notice and this permission notice shall be included in all copies or substantial portions of the Soft-
ware.

THE SOFTWARE IS PRVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTIC-
ULAR PURPOSE AND NONINFRINGEMENTIN NO EVENT SHALL THE X CONSORTIUM BE LIABLE FOR
ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACTTORT OR OTH-
ERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

Except as contained in this notice, the name of The Open Group shall not be used in advertising or otherwise to pro-
mote the sale, use or other dealings in this Software without prior written authorization from The Open Group.

Copyright © 1985, 1986, 1987, 1988, 1989, 1990, 1991 by Digital Equipment Corporation
Portions Copyright © 1990, 1991 by Tektronix, Inc.

Permission to use, cgpmodify and distribute this documentation forygourpose and without fee is hereby granted,
provided that the alve cwpyright notice appears in all copies and that both that copyright notice and this permission
notice appear in all copies, and that the names of Digital and Tektronix not be used in in advertising or publicity per-
taining to this documentation without specific, written prior permission. Digital and Tektronix makes no representa-
tions about the suitability of this documentation foy parpose. lis provided “as is’without express or implied war-
ranty.

Acknowledgments

The design and implementation of the first 10 versions of X were primarily the work of three
individuals: Robert Scheifler of the MIT Laboratory for Computer Science and Jim Gettys of Dig-
ital Equipment Corporation and Ron Newman of Midth at MIT Project AthenaX version 11,
however, is the result of the efforts of dozens of individuals at almost ay hogations and
organizations. Atthe risk of offending some of the players by exclusion, we woutctdik
acknowledge some of the people who desgpecial credit and recognition for their work on

Xlib. Our apologies to anyone inadvertentiyedooked.

Release 1

Our thanks does to Ron Newman (MIT Project Athena), who contributed substantially to the
design and implementation of the Version 11 Xlib interface.

Our thanks also goes to Ralph Swick (Project Athena and Digital) who kept it all together for us
during the early releases. He handled literally thousands of requests from peppidere and
saved the sanity of at least one of us. His calm good cheer was a foundation on which we could
build.

Our thanks also goes to Todd Bruri@®ektronix) who was “loaned'to Project Athena at

exactly the right moment to provide very capable and much-needed assistance during the alpha
and beta releases. He was responsible for the successful integration of sources from multiple
sites; we would not va had a release without him.

Our thanks also goes to Al Mento and Al Wojtas of Digstbl. TRIX Documentation Group.

With good humor and cheehey took a rough draft and made it an infinitely better and more use-
ful document. The work tlyehavedone will help may everywhere. V& dso would like to hank

Hal Murray (Digital SRC) and Peter George (Digital VMS) who contributed much by proofread-
ing the early drafts of this document.

Our thanks also goes to fIBfike (Digital UEG), Tom Benson, Jackie Granfield, and Vince Orgo-
van (Digital VMS) who helped with the library utilities implementation; to Hania Gajewska (Dig-
ital UEG-WSL) who, along with Ellis Cohen (CMU and Siemens), was instrumental in the
semantic design of the windananager properties; and to @aRosenthal (Sun Microsystems)

who also contributed to the protocol and provided the sample generic color frame buffer device-
dependent code.

The alpha and beta test participants desgrgcial recognition and thanks as well. It is signifi-
cant that the bug reports (and mdixes) during alpha and beta test came almost exelysi

from just a fev of the alpha testers, mostly hardware vendors working on product implementa-
tions of X. The continued public contribution of vendors andeugities is certainly to the bene-
fit of the entire X community.

Our special thanks must go to Sam FuN&ce-President of Corporate Research at Digital, who
has remained committed to the widest publlability of X and who made it possible to greatly
supplement MITS resources with the Digital sfah order to mak version 11 a realityMary of

the people mentioned here are part of the Western Software Laboratory (Digital UEG-WSL) of
the ULTRIX Engineering group and work for Snegk\Wallace, who has been vital to the

projects aiccess. Othensot mentioned here worked on the toolkit and are acknowledged in the
X Toolkit documentation.

Of course, we must particularly thank Paul Asente, formerly of Stanforaidity and nav of
Digital UEG-WSL, who wrote \Whe predecessor to X, and Brian Reid, formerly of Stanford
University and nav of Digital WRL, who had much to do with \Wdesign.

Finally, our thanks goes to M|TDigital Equipment Corporation, and IBM for providing the envi-
ronment where it could happen.

Release 4

Our thanks go to Jim Fulton (MIT X Consortium) for designing and specifying th&tike
functions for Inter-Client Communication Gamtions (ICCCM) support.

We dso thank Al Mento of Digital for his continued effort in maintaining this document and Jim
Fulton and Donna Caeerse (MIT X Consortium) for their much-appreciated efforts in reviewing
the changes.

Release 5

The principal authors of the Input Method facilities are Vania Jol¢byden Software Founda-
tion) and Bill McMahon (Hewlett-&ckard). Theprincipal author of the rest of the international-
ization facilities is Glenn Widener €Kktronix). Ourthanks to them for keeping their sense of
humor through a long and sometimes difficult design process. Although the words and much of
the design are due to them, manthers hae ontributed substantially to the design and imple-
mentation. ®m McFarland (HP) and Frank Rojas (IBM) desgmrticular recognition for their
contritutions. Othercontributors were: Tim Anderson (Motorola), Alka Badshah (OSF), Gabe
Beged-De (HP), Chih-Chung K (111), Vera Cheng (l11), Michael Collins (Digital), Walt Daniels
(IBM), Noritoshi Demizu (OMRON), KeisukFukui (Fujitsu), Hitoshoi Fukumoto (Nihon Sun),
Tim Greenwood (Digital), John Haey (IBM), Hideki Hiura (Sun), Fred Horman (AT&T),
Norikazu Kaiya (Fujitsu), Yuji Kamata (IBM), Yutaka Kataoka (Waseda/&fgity), Ranee
Khubchandani (Sun), Akira Kon (NEC), Hiroshi Kuribayashi (OMRON), Temulkkrosaka
(Sun), Seiji Kuwari (OMRON), Sandra Martin (OSF), Narita Masal(itujitsu), Masato

Morisaki (NTT), Nelson Ng (Sun), Takashi Nishimura (NTT America), Makato Nishino (IBM),
Akira Ohsone (Nihon Sun), Chris Peterson (MIT), Sam Shteingart (AT&T), Manish Sheth
(AT&T), Muneiyoshi Suzuki (NTT), Cori Mehring (Digital), Shoji Sugiyama (IBM), and Eiji
Tosa (IBM).

We ae deeply indebted to Tatsuya Kato (NTT), Hiroshi Kuribayashi (OMRON), Seiji Kuwari
(OMRON), Muneiyoshi Suzuki (NTT), and Li Yuhong (OMRON) for producing one of the first
complete sample implementation of the internationalization facilities, and Hiromu Inukai (Nihon
Sun), Takashi Fujiwara (Fujitsu), Hideki Hiura (Sun), Yasuhiraw#@Oki Technosystems Labo-
ratory), Kazunori Nishihara (Fuji Xerox), Masaki Takeuchi (Sony), Katsuhisa Yano (Toshiba),
Makoto Wakamatsu (SgrCorporation) for producing the another complete sample implementa-
tion of the internationalization facilities.

The principal authors (design and implementation) of the Xcms color management facilities are
Al Tabayoyon (Tektronix) and Chuck AdamseKtronix). Joanaylor (Tektronix), Bob Toole
(Tektronix), and Keith Packard (MIT X Consortium) also contributed significantly to the design.
Others who contributed are: Harold Boll (Kodak), Ken Bronstein (HP), W@am (SGI), Donna
Corverse (MIT X Consortium), Elias Israel (ISC), Deron Johnson (Sun), Jim King (Adobe),
Ricardo Motta (HP), Chuck Peek (IBM), Wil Plouffe (IBM), @aSernlicht (MIT X Consor-

tium), Kumar Talluri (AT&T), and Richard Verbg(IBM).

We dso once again thank Al Mento of Digital for his work in formatting and reformatting text for
this manual, and for producing man pages. Thanks alsove Rather (IXI) for proof-reading
and finding a number of small errors.

Release 6

Stephen Gildea (X Consortium) authored the threads support. Ovais Ashraf (Sun) and Greg
Olsen (Sun) contributed substantially by testing the facilities and reporting bugs in a timely fash-
ion.

The principal authors of the internationalization facilities, including Input and Output Methods,
are Hideki Hiura (SunSoft) and Shigeru Yamada (Fujitsu OSSI). Although the words and much
of the design are due to them, mathers hae contributed substantially to the design and imple-
mentation. Thg are: Takashi Fujiwara (Fujitsu), Yoshio Horiuchi (IBM), Makoto Inada (Digital),
Hiromu Inukai (Nihon SunSoft), Song JaeKyung (KAIST), Frahkng (Digital), Tom McFar-

land (HP), Hiroyuki Miyamoto (Digital), MasahikNarita (Fujitsu), Frank Rojas (IBM),

Hidetoshi Tajima (HP), Masaki Takeuchi (Sony), Makoto Wakamatsu (Sony), Masaki Wakao
(IBM), Katsuhisa Yano(Toshiba) and Jinsoo Yoon (KAIST).

The principal producers of the sample implementation of the internationalization facilities are:
Jeffrey Bloomfield (Fujitsu OSSI), Takashi Fujiwara (Fujitsu), Hideki Hiura (SunSoft), Yoshio
Horiuchi (IBM), Makoto Inada (Digital), Hiromu Inukai (Nihon SunSoft), Song JaeKyung
(KAIST), Riki Kawaguchi (Fujitsu), FrankLing (Digital), Hiroyuki Miyamoto (Digital),

Hidetoshi Tajima (HP), Toshimitsu Terazono (Fujitsu), Makoto Wakamatsu (Sony), Masaki
Wakao (IBM), Shigeru Yamada (Fujitsu OSSI) and Katsuhisa Yano (Toshiba).

The coordinators of the integration, testing, and release of this implementation of the internation-
alization facilities are Nobuyuki Tanaka (Sony) and Makoto Wakamatsu (Sony).

Others who hee ontributed to the architectural design or testing of the sample implementation
of the internationalization facilities are: Hector Chan (Digital), Michael Kung (IBM), Joseph
Kwok (Digital), Hiroyuki Machida (Sony), Nelson Ng (SunSoft), Frank Rojas (IBM), Yoshiyuki
Segawa (Fujitsu OSSI), Makik Shimamura (Fujitsu), Shoji Sugiyama (IBM), Lining Sun (SGI),
Masaki Takeuchi (Sony), Jinsoo Yoon (KAIST) and Akiyasu Zen (HP).

Jim Gettys
Cambridge Research Laboratory
Digital Equipment Corporation

Robert W Scheifler
Laboratory for Computer Science
Massachusetts Institute of Technology

Chapter 1

Introduction to Xlib

The X Windav System is a network-transparent wimdsystem that was designed at MIX

display servers run on computers with either monochrome or color bitmap displayieardie
server distributes user input to and accepts output requests from various client programs located
either on the same machine or elsewhere in theanktwXlib is a C subroutine library that appli-
cation programs (clients) use to interface with the winggstem by means of a stream connec-

tion. Althougha dient usually runs on the same machine as the X server it is talking to, this need
not be the case.

Xlib — C Languae X hterfaceis a reference guide to the lowsk C language interface to the X
Window System protocol. It is neither a tutorial nor a useriide to programming the X Win-

dow System. Ratheit provides a detailed description of each function in the library as well as a
discussion of the related background informatiXtib — C Languae X hterfaceassumes a

basic understanding of a graphics wiwdsgystem and of the C programming language. Other
higher-level abstractions (for example, those provided by the toolkits for X) are built on top of the
Xlib library. For further information about these highevdd ibraries, see the appropriate toolkit
documentation. Th& Window System Protocpkovides the definiie word on the behavior of

X. Althoughadditional information appears here, the protocol document is the ruling document.

To provide an introduction to X programming, this chapter discusses:
. Overview of the X Windav System

. Errors

. Standard header files

. Generic values and types

. Naming and argument ceentions within Xlib

. Programming considerations

. Character sets and encodings

. Formatting comentions

1.1. Owerview of the X Window System

Some of the terms used in this book are unique to X, and other terms that are common to other
window systems hee dfferent meanings in X.You may find it helpful to refer to the glossary,
which is located at the end of the book.

The X Windav System supports one or more screens containredapping windows or subwin-
dows. Ascreen is a physical monitor and hardware that can be gagscale, or monochrome.
There can be multiple screens for each displayaskstation. Asingle X server can provide dis-
play services for gnnumber of screensA set of screens for a single user with oegtioard and
one pointer (usually a mouse) is called a display.

All the windows in an X server are arranged in strict hierarchies. At the top of each higésach
root windaw, which covers each of the display screens. Each root winiggpartially or com-
pletely cavered by child windavs. All windows, except for root windows, V&parents. Therés
usually at least one windofor each application program. Child windows may in turveheir

Xlib — C Library libX11 1.3.3

own children. Inthis way an gplication program can create an arbitrarily deep tree on each
screen. Xprovides graphics, text, and raster operations for windows.

A child window can be larger than its parent. That is, part or all of the child wirtdo extend
beyond the boundaries of the parent, but all output to a wiigldipped by its parent. If seral
children of a windw haveoverlapping locations, one of the children is considered to be on top of
or raised wer the others, thus obscuring them. Output to areasred by other windows is sup-
pressed by the winglosystem unless the windohas backing store. If a windois dbscured by

a £cond windwy, the second winde obscures only those ancestors of the second wiirtllat

are also ancestors of the first wimdo

A window has a border zero or more pixels in width, which can lgatiern (pixmap) or solid
color you like. Awindow usually but not alrays has a background pattern, which will be
repainted by the windo system when uncered. Childwindows obscure their parents, and
graphic operations in the parent wimdosually are clipped by the children.

Each windav and pixmap has its own coordinate system. The coordinate system has the X axis
horizontal and the Y axis vertical with the origin [0, 0] at the upper-left co@mordinates are
integral, in terms of pixels, and coincide with pixel centéra. a window, the origin is inside the
border at the inside, upper-left corner.

X does not guarantee to presetive contents of windes. Whenpart or all of a windw is hid-

den and then brought back onto the screen, its contents may be lost. The server then sends the
client program arExposeevent to notify it that part or all of the wingoneeds to be repainted.
Programs must be prepared to regenerate the contents of windows on demand.

X also provides off-screen storage of graphics objects, called pixmaps. Single plane (depth 1)
pixmaps are sometimes referred to as bitmaps. Pixmaps can be used in most graphics functions
interchangeably with windows and are used in various graphics operations to define patterns or
tiles. Windows and pixmaps together are referred to asalhas.

Most of the functions in Xlib just add requests to an output buffeese requests latexeeute
asynchronously on the X servdtunctions that return values of information stored in the server
do not return (that is, tiieblock) until an explicit reply is receéd or an eror occurs. You can
provide an error handlewhich will be called when the error is reported.

If a client does not want a request ¥e@ite asynchronouslit can follow the request with a call
to XSync, which blocks until all previously buffered asynchronouanés hae been sent and
acted on. As an important side effect, the output buffer in Xlibnayal flushed by a call to any
function that returns a value from the server or waits for input.

Marny Xlib functions will return an integer resource ID, which allows you to refer to objects
stored on the X serveiThese can be of typ&indow, Font, Pixmap, Colormap, Cursor, and
GContext, as &fined in the file X11/X.h>. Theseesources are created by requests and are
destroyed (or freed) by requests or when connections are closed. Most of these resources are
potentially sharable between applications, and in fact, windows are manipulated explicitly by
window manager programg-onts and cursors are shared automatically across multiple screens.
Fonts are loaded and unloaded as needed and are shared by multiple Ebetsisire often

cached in the serveKlib provides no support for sharing graphics contexts between applica-
tions.

Client programs are informed ofents. Eents may either be side effects of a request (for exam-
ple, restacking windows generatésposeevents) or completely asynchronous (for example,
from the leyboard). Aclient program asks to be informed wkets. Becausether applications
can sendents to your application, programs must be prepared to handle (or ignemts ef all

types.

Xlib — C Library libX11 1.3.3

Input events (for example, ady pressed or the pointer mad) arrive asynchronously from the
server and are queued until yreee requested by an explicit call (for exampt@extEvent or
XWindowEvent). Inaddition, some library functions (for examp}RaiseWindow) generate
Exposeand ConfigureRequestevents. Thesevents also arxie asynchronouslybut the client
may wish to explicitly wait for them by callingSync after calling a function that can cause the
server to generate/ents.

1.2. Errors

Some functions returBtatus, an integer error indication. If the function fails, it returns a zero.

If the function returns a status of zero, it has not updated the regumemts. Becaug@ does

not provide multiple return values, mafunctions must return their results by writing into client-
passed storage. By default, errors are handled either by a standard library function or by one that
you provide. Functionghat return pointers to strings return NULL pointers if the string does not
exist.

The X server reports protocol errors at the time that it detects them. If more than one error could
be generated for awgin request, the server can repory afithem.

Because Xlib usually does not transmit requests to the server immediately (that is, it buffers
them), errors can be reported much later thay dbeially occur For debugging purposes, how-

eve, Xlib provides a mechanism for forcing synchronous behavior (see section 11.8.1). When
synchronization is enabled, errors are reported gsathegenerated.

When Xlib detects an errdt calls an error handlewhich your program can pvae. If you do
not provide an error hand]ghe error is printed, and your program terminates.

1.3. StandardHeader Files

The following include files are part of the Xlib standard:

. <X11/Xlib.h>
This is the main header file for XlitFhe majority of all Xlib symbols are declared by
including this file. This file also contains the preprocessor syidlilnEpecificationRe-

lease This symbol is defined to e the 6 in this release of the standard. (Release 5 of
Xlib was the first release toVe&atis symbol.)

. <X11/X.h>
This file declares types and constants for the X protocol that are to be used by applications.

It is included automatically fromX11/Xlib.h>, so application code shouldveeneed to
reference this file directly.

. <X11/Xcms.l»
This file contains symbols for much of the color management facilities described in chapter
6. All functions, types, and symbols with the prefix “Xcms”, plus the Colon@ision
Contexts macros, are declared in this filX1%/Xlib.h> must be included before including
this file.
. <X11/Xutil.h>

This file declares various functions, types, and symbols used for inter-client communication
and application utility functions, which are described in chapters 14 andXta./Xib.h>
must be included before including this file.

. <X11/Xresource.l>

This file declares all functions, types, and symbols for the resource manager facilities,
which are described in chapter 15XXl/Xlib.h> must be included before including this

Xlib — C Library libX11 1.3.3

file.
. <X11/Xatom.h>

This file declares all predefined atoms, which are symbols with the prefix “XA_".
. <X11/cursorfont.h>

This file declares the cursor symbols for the standard cursor font, which are listed in appen-
dix B. All cursor symbols ha te prefix “XC_".

. <X11l/keysymdef.l»

This file declares all standare¥Sym values, which are symbols with the prefix “XK_".

The KeySyms are arranged in groups, and a preprocessor symbol controls inclusion of each
group. Thepreprocessor symbol must be defined prior to inclusion of the file to obtain the
associatedalues. Thereprocessor symbols are XK_MISCELLANXK XKB_KEYS,
XK_3270, XK_LATIN1, XK_LATIN2, XK_LATIN3, XK_LATIN4, XK_KA TAKANA,
XK_ARABIC, XK_CYRILLIC, XK_GREEK, XK_TECHNICAL, XK_SPECIAL,
XK_PUBLISHING, XK_APL, XK_HEBREW XK_THAI, and XK_KOREAN.

. <X11/keysym.h»

This file defines the preprocessor symbols XK_MISCELLAXK_XKB_KEYS,
XK_LATIN1, XK_LATIN2, XK_LATIN3, XK_LATIN4, and XK_GREEK and then
includes X11/keysymdef.t».

. <X11/Xlibint.h >

This file declares all the functions, types, and symbols used for extensions, which are
described in appendix C. This file automatically includ&& X Xlib.h>.

. <X11/Xproto.h>

This file declares types and symbols for the basic X protocol, for use in implementing
extensions. lis included automatically fromX11/Xlibint.h >, so application and exten-
sion code should wer need to reference this file directly.

. <X11/Xprotostr.h>

This file declares types and symbols for the basic X protocol, for use in implementing
extensions. lis included automatically fromX11/Xproto.h>, so application and exten-
sion code should wer need to reference this file directly.

. <X11/X10.h>

This file declares all the functions, types, and symbols used for the X10 compatibility func-
tions, which are described in appendix D.

1.4. GenericValues and Types

The following symbols are defined by Xlib and used throughout the manual:

. Xlib defines the typ®ool and the Boolean valués ue and False.

. None is the urversal null resource ID or atom.

. The typeXID is used for generic resource IDs.

. The typeXPointer is defined to be ch&and is used as a generic opaque pointer to data.

1.5. Namingand Argument Corventions within Xlib

Xlib follows a number of carentions for the naming and syntax of the functionsveGihat you
remember what information the function requires, theseantions are intended to makhe
syntax of the functions more predictable.

Xlib — C Library libX11 1.3.3

The major naming caentions are:

To differentiate the X symbols from the other symbols, the library uses mixed case for
external symbols. It leges lowercase for variables and all uppercase for user macros, as
per existing covention.

All Xlib functions begin with a capital X.
The beginnings of all function names and symbols are capitalized.

All user-visible data structures begin with a capital X. More genegalghing that a user
might dereference begins with a capital X.

Macros and other symbols do not begin with a capitaldstinguish them from all user
symbols, each word in the macro is capitalized.

All elements of or variables in a data structure arevietoase. Compounaords, where
needed, are constructed with underscorgs (

The display argument, where used, isagk first in the argument list.

All resource objects, where used, occur at the beginning of the argument list immediately
after the display argument.

When a graphics context is present together with another type of resource (most com-
monly, a dawable), the graphics context occurs in the argument list after the other
resource. Dnaables outrank all other resources.

Source arguments\abys precede the destination arguments in the argument list.
The x argument alays precedes the y argument in the argument list.
The width argument alays precedes the height argument in the argument list.

Where the x, ywidth, and height arguments are used togetherx and y arguments
always precede the width and height arguments.

Where a mask is accompanied with a structure, the masitsaprecedes the pointer to the
structure in the argument list.

1.6. Programming Considerations
The major programming considerations are:

Coordinates and sizes in X are actually 16-bit quantities. This decision was made to mini-
mize the bandwidth required for avgn levd of performance. Coordinatesually are

declared as amt in the interbce. \Alues larger than 16 bits are truncated silerfllges

(width and height) are declared as unsigned quantities.

Keyboards are the greatest variable between different manufactuoekstations. Ifyou
want your program to be portable, you should be particularly consexVatie.

Mary display systems & limited amounts of off-screen memonyf you can, you should
minimize use of pixmaps and backing store.

The user should ka @ntrol of his screen real estate. Therefore, you should write your
applications to react to windomanagement rather than presume control of the entire
screen. Whayou do inside of your top-el window, howevae, is up to your application.
For further information, see chapter 14 andltiter-Client Communication Conventions
Manual

Xlib — C Library libX11 1.3.3

1.7. CharacterSets and Encodings

Some of the Xlib functions makeference to specific character sets and character encodings.
The following are the most common:

. X Portable Character Set

A basic set of 97 characters, which are assumed to exist in all locales supported by Xlib.
This set contains the following characters:

a..z A.Z 0.9 "#$%&'()*+,-./;;<=>?@[\]"_Y{|} <space>, <tab>, and <newline>

This set is the left/lower half of the graphic character set of ISO8859-1 plus space, tab, and
newline. lItis also the set of graphic characters in 7-bit ASCII plus the same three control
characters. Thactual encoding of these characters on the host is system dependent.

. Host Portable Character Encoding

The encoding of the X Portable Character Set on the host. The encoding itself is not
defined by this standard, but the encoding must be the same in all locales supported by Xlib
on the host. If a string is said to be in the Host Portable Character Encoding, then it only
contains characters from the X Portable Character Set, in the host encoding.

. Latin-1
The coded character set defined by the ISO8859-1 standard.
. Latin Portable Character Encoding

The encoding of the X Portable Character Set using the Latin-1 codepoints plus ASCII con-
trol characters. If a string is said to be in the Latin Portable Character Encoding, then it
only contains characters from the X Portable Character Set, not all of Latin-1.

. STRING Encoding
Latin-1, plus tab and newline.
. POSIX Portable Filename Character Set

The set of 65 characters, which can be used in naming files on a POSIX-compliant host,
that are correctly processed in all locales. The set is:

a.zA.Z0.9. -

1.8. Formatting Conventions
Xlib — C Languae X hterfaceuses the following camentions:

. Global symbols are printed ithis special bnt. These can be either function names, sym-
bols defined in include files, or structure names. When declared and defined, function argu-
ments are printed ialics. In the explanatory text that follows, thasually are printed in
regular type.

. Each function is introduced by a general discussion that distinguishes it from other func-
tions. Thefunction declaration itself follows, and each argument is specifically explained.
Although ANSI C function prototype syntax is not used, Xlib header files normally declare
functions using function prototypes in ANSI Cvénnments. Generaliscussion of the
function, if ary is required, follows the guments. Wherapplicable, the last paragraph of
the explanation lists the possible Xlib error codes that the function can geriaage.
complete discussion of the Xlib error codes, see section 11.8.2.

Xlib — C Library libX11 1.3.3

. To diminate ary ambiguity between those arguments that you pass and those that a func-
tion returns to you, the explanations for all arguments that you pass start with the word
specifiesr, in the case of multiple arguments, the wepecify The explanations for all
arguments that are returned to you start with the wetminsor, in the case of multiple
arguments, the wonetturn. The explanations for all arguments that you can pass and are
returned start with the wordpecifies and returns

. Any pointer to a structure that is used to return a value is designated as such reyutitme
suffix as part of its name. All other pointers passed to these functions are used for reading
only. A few arguments use pointers to structures that are used for both input and output
and are indicated by using th&_outsuffix.

Xlib — C Library libX11 1.3.3

Chapter 2

Display Functions

Before your program can use a displayu must establish a connection to the X ser@smce
you have established a connection, you then can use the Xlib macros and functions discussed in
this chapter to return information about the displaljis chapter discussesviato:

. Open (connect to) the display

. Obtain information about the displdynage formats, or screens
. Generate d&NoOperation protocol request

. Free client-created data

. Close (disconnect from) a display

. Use X Server connection close operations

. Use Xlib with threads

. Use internal connections

2.1. Openingthe Display
To goen a connection to the X server that controls a disps@XOpenDisplay.

Display *XOpenDisplaydisplay_namg
char *display_name

display_name Specifies the hardware display name, which determines the display and commu-
nications domain to be used. On a POSIX-conformant system, if the dis-
play_name is NULL, it defaults to the value of the DISFLghvironment vari-
able.

The encoding and interpretation of the display name are implementation-dependent. Strings in
the Host Portable Character Encoding are supported; support for other characters is implementa-
tion-dependent. OROSIX-conformant systems, the display hame or DISPe&Avironment

variable can be a string in the format:

Xlib — C Library libX11 1.3.3

protocol/hostnamenumberscreen_number

protocol Specifies a protocol family or an alias for a protocol famypported protocol
families are implementation dependent. The protocol entry is optional. If proto-
col is not specified, the / separating protocol and hostname must also not be spec-
ified.

hostname Specifies the name of the host machine on which the display is physically
attached. Wu follow the hostname with either a single colon () or a double
colon (::).

number Specifies the number of the display server on that host macYooemay
optionally follow this display number with a period (A single CPU can hae
more than one displayMultiple displays are usually numbered starting with
zero.

screen_number
Specifies the screen to be used on that seMaltiple screens can be controlled
by a single X serverThe screen_number sets an internal variable that can be
accessed by using thgefaultScreenmacro or theXDefaultScreenfunction if
you are using languages other than C (see section 2.2.1).

For example, the following would specify screen 1 of display 0 on the machine named “dual-
headed”:

dual-headed:0.1

The XOpenDisplay function returns ®isplay structure that serves as the connection to the X
server and that contains all the information about that X seK@penDisplay connects your
application to the X server through TCP or DECnet communications protocols, or through some
local inter-process communication protocol. If the protocol is specified as "tcp", "inet", or

"Iinet6", or if no protocol is specified and the hostname is a host machine name and a single colon
(:) separates the hostname and display nund@penDisplay connects using TCP streams. (If

the protocol is specified as "inet", TC#pIPv4 is used. If the protocol is specified as "inet6",

TCP wver IPV6 is used. Otherwise, the implementation determines which IP version is used.) If
the hosthame and protocol are both not specified, Xlib useswshiteelieves is he fastest

transport. Ifthe hostname is a host machine name and a double colon (::) separates the hostname
and display numbeXOpenDisplay connects using DECneA single X server can support any

or all of these transport mechanisms simultaneouslgarticular Xlib implementation can sup-

port maly more of these transport mechanisms.

If successful XOpenDisplay returns a pointer to Bisplay structure, which is defined in
<X11/Xlib.h>. If XOpenDisplay does not succeed, it returns NULL. After a successful call to
XOpenDisplay, dl of the screens in the display can be used by the client. The screen number
specified in the display_name argument is returned bp#fiaultScreenmacro (or theXDe-
faultScreen function). You can access elements of Display and Screenstructures only by
using the information macros or functiorisor information about using macros and functions to
obtain information from th®isplay structure, see section 2.2.1.

X servers may implement various types of access control mechanisms (see section 9.8).

Xlib — C Library libX11 1.3.3

2.2. Obtaining Information about the Display, Image Formats, or Screens

The Xlib library provides a number of useful macros and corresponding functions that return data
from the Display structure. Thenacros are used for C programming, and their corresponding
function equialents are for other language bindings. This section discusses the:

. Display macros
. Image format functions and macros
. Screen information macros

All other members of th®isplay structure (that is, those for which no macros are defined) are
private to Xlib and must not be used. Applications musendirectly modify or inspect these
private members of th®isplay structure.

Note

The XDisplayWidth , XDisplayHeight, XDisplayCells, XDisplayPlanes XDis-
playWidthMM , and XDisplayHeightMM functions in the next sections are mis-
named. Thestinctions really should be named Scwhateverand XScreewhat-
ewer, not Displaywhateveror XDisplaywhatever Our apologies for the resulting
confusion.

2.2.1. DisplayMacros

Applications should not directly modify mipart of theDisplay and Screenstructures. The
members should be considered read-atilgough thg may change as the result of other opera-
tions on the display.

The following lists the C language macros, their corresponding functiovemis that are for
other language bindings, and what data both can return.

AllPlanes

unsigned long XAllIPlanes()

Both return a value with all bits set to 1 suitable for use in a plane argument to a procedure.

Both BlackPixel and WhitePixel can be used in implementing a monochrome application.

These pixel values are for permanently allocated entries in the default colormap. The actual RGB
(red, green, and blue) values are settable on some screens agdiaseamay not actually be

black or white. The names are intended tovegrthe expected relat intensity of the colors.

10

Xlib — C Library libX11 1.3.3

BlackPixel (display, screen_number

unsigned long XBlackP#® (display, screen_numbér
Display *display,
int screen_number

display Specifies the connection to the X server.

screen_number
Specifies the appropriate screen number on the host server.

Both return the black pixel value for the specified screen.

WhitePixel (display, screen_numb@r

unsigned long XWhiteP& (display, screen_numbér
Display *display,
int screen_number

display Specifies the connection to the X server.

screen_number
Specifies the appropriate screen number on the host server.

Both return the white pixel value for the specified screen.

ConnectionNumbexisplay)

int XConnectionNumbedisplay)
Display *display,

display Specifies the connection to the X server.

Both return a connection number for the specified displmya FOSIX-conformant system, this
is the file descriptor of the connection.

DefaultColormapdisplay, screen_number

Colormap XDeéultColormapdisplay, screen_number
Display *display,
int screen_number

display Specifies the connection to the X server.
screen_number
Specifies the appropriate screen number on the host server.

Both return the default colormap ID for allocation on the specified screen. Most routine

11

Xlib — C Library libX11 1.3.3

allocations of color should be made out of this colormap.

DefaultDepth flisplay, screen_numbér

int XDefaultDepth flisplay, screen_numbér
Display *display,
int screen_number

display Specifies the connection to the X server.

screen_number
Specifies the appropriate screen number on the host server.

Both return the depth (number of planes) of the default root wifidothe specified screen.
Other depths may also be supported on this screeiXdatchVisualinfo).

To determine the number of depths that aralable on a gren screen, useXListDepths.

int *XListDepthsdisplay, screen_numbecount_returr)
Display *display,
int screen_number
int *count_return

display Specifies the connection to the X server.

screen_number
Specifies the appropriate screen number on the host server.

count_return Returns the number of depths.

The XListDepths function returns the array of depths that arglable on the specified screen.
If the specified screen_number is valid and sufficient memory for the array can be allocated,
XListDepths sets count_return to the number wéitable depths. Otherwise, it does not set
count_return and returns NULLTo release the memory allocated for the array of depths, use
XFree.

DefaultGC (display, screen_numb@r

GC XDefaultGC (display, screen_numb@r
Display *display,
int screen_number
display Specifies the connection to the X server.

screen_number
Specifies the appropriate screen number on the host server.

Both return the default graphics context for the root windbthe specified screen. This GC is
created for the corenience of simple applications and contains the default GC components with
the foreground and background pixel values initialized to the black and white pixels for the

12

Xlib — C Library libX11 1.3.3

screen, respeegtly. You can modify its contents freely because it is not usedyiX hilm func-
tion. ThisGC should neer be freed.

DefaultRootWindav (display)

Window XDefaultRootWinda (display)
Display *display,

display Specifies the connection to the X server.

Both return the root windw for the default screen.

DefaultScreenOfDisplaydisplay)

Screen *XDefultScreenOfDisplaydisplay)
Display *display,

display Specifies the connection to the X server.

Both return a pointer to the default screen.

ScreenOfDisplaydisplay, screen_numbgr

Screen *XScreenOfDisplag(splay, screen_numbér
Display *display;,
int screen_number

display Specifies the connection to the X server.

screen_number
Specifies the appropriate screen number on the host server.

Both return a pointer to the indicated screen.

DefaultScreendisplay)

int XDefaultScreendisplay)
Display *display;,

display Specifies the connection to the X server.

Both return the default screen number referenced bX@w@enDisplay function. Thismacro or
function should be used to rewrðe screen number in applications that will use only a single
screen.

13

Xlib — C Library libX11 1.3.3

DefaultMsual (display, screen_number

Visual *XDefaultMsual (display, screen_numbgr
Display *display,
int screen_number
display Specifies the connection to the X server.

screen_number
Specifies the appropriate screen number on the host server.

Both return the default visual type for the specified scr&enfurther information about visual
types, see section 3.1.

DisplayCells flisplay, screen_numbér

int XDisplayCellsisplay, screen_number
Display *display,
int screen_number
display Specifies the connection to the X server.

screen_number
Specifies the appropriate screen number on the host server.

Both return the number of entries in the default colormap.

DisplayPlanesdisplay, screen_numbgr

int XDisplayPlanesdisplay, screen_number
Display *display;,
int screen_number
display Specifies the connection to the X server.

screen_number
Specifies the appropriate screen number on the host server.

Both return the depth of the root windof the specified screerkor an explanation of depth, see
the glossary.

14

Xlib — C Library libX11 1.3.3

DisplayString @isplay)

char *XDisplayString{isplay)
Display *display,

display Specifies the connection to the X server.

Both return the string that was passeX@penDisplay when the current display was opened.

On POSIX-conformant systems, if the passed string was NULL, these return the value of the DIS-
PLAY environment variable when the current display was opened. These are useful to applica-
tions that inoke the fork system call and want to open amngnnection to the same display

from the child process as well as for printing error messages.

long XExtendedMaxRequestSizigplay)
Display *display;

display Specifies the connection to the X server.

The XExtendedMaxRequestSizeunction returns zero if the specified display does not support
an extended-length protocol encoding; otherwise, it returns the maximum request size (in 4-byte
units) supported by the server using the extended-length encoding. The Xlib fuxdicavs-

Lines, XDrawArcs , XFillPolygon, XChangeProperty, XSetClipRectangles and XSetRe-

gion will use the extended-length encoding as necesi$anpported by the servet)se of the
extended-length encoding in other Xlib functions (for examgBrawPoints, XDrawRectan-

gles, XDrawSegments XFillArcs , XFillRectangles, XPutimage) is permitted but not

required; an Xlib implementation may choose to split the data across multiple smaller requests
instead.

long XMaxRequestSizéfsplay)
Display *display,

display Specifies the connection to the X server.

The XMaxRequestSizefunction returns the maximum request size (in 4-byte units) supported by
the server without using an extended-length protocol encoding. Single protocol requests to the
server can be no larger than this size unless an extended-length protocol encoding is supported by
the server The protocol guarantees the size to be no smaller than 4096 units (16384 bytes). Xlib
automatically breaks data up into multiple protocol requests as necessary for the following func-
tions: XDrawPoints, XDrawRectangles XDrawSegments XFillArcs , XFillRectangles, and
XPutimage.

15

Xlib — C Library libX11 1.3.3

LastkKnavnRequestProcessatigplay)

unsigned long XLastKnenRequestProcesseatigplay)
Display *display,

display Specifies the connection to the X server.

Both extract the full serial number of the last request known by Xlibve been processed by
the X server Xlib automatically sets this number when repliegnés, and errors are reged.

NextRequestdisplay)

unsigned long XNeRequestdisplay)
Display *display,

display Specifies the connection to the X server.

Both extract the full serial number that is to be used for the next request. Serial numbers are
maintained separately for each display connection.

Protocol\érsion @isplay)

int XProtocol\érsion display)
Display *display;

display Specifies the connection to the X server.
Both return the major version number (11) of the X protocol associated with the connected dis-

play.

ProtocolReision (display)

int XProtocolRe&ision (display)
Display *display,

display Specifies the connection to the X server.

Both return the minor protocol revision number of the X server.

16

Xlib — C Library libX11 1.3.3

QLength display)

int XQLengthdisplay)
Display *display,

display Specifies the connection to the X server.

Both return the length of therent queue for the connected displayote that there may be more
events that hae ot been read into the queue yet (¥&arentsQueued.

RootWindav(display, screen_number

Windov XRootWindav (display, screen_numbér
Display *display,
int screen_number

display Specifies the connection to the X server.

screen_number
Specifies the appropriate screen number on the host server.

Both return the root windma These are useful with functions that need aveée of a particular
screen and for creating tops#windows.

ScreenCountisplay)

int XScreenCountdisplay)
Display *display;

display Specifies the connection to the X server.

Both return the number of/alable screens.

Server\éndor display)

char *XServer¥éndor @isplay)
Display *display;,

display Specifies the connection to the X server.
Both return a pointer to a null-terminated string that provides some identification of the owner of
the X server implementation. If the data returned by the server is in the Latin Portable Character

Encoding, then the string is in the Host Portable Character Encoding. Otherwise, the contents of
the string are implementation-dependent.

17

Xlib — C Library libX11 1.3.3

VendorReleasadisplay)

int XVendorReleaseal{splay)
Display *display;,

display Specifies the connection to the X server.

Both return a number related to a vendaglease of the X server.

2.2.2. ImageFormat Functions and Macros

Applications are required to present data to the X server in a format that the server ddimands.
help simplify applications, most of the work required toveninthe data is provided by Xlib (see
sections 8.7 and 16.8).

The XPixmapFormatValues structure provides an interface to the pixmap format information
that is returned at the time of a connection setup. It contains:

typedef struct {
int depth;
int bits_per_pixel,
int scanline_pad;
} X PixmapFormatValues;

To dbtain the pixmap format information for asgn display, use XListPixmapFormats.

XPixmapFormatValues *XListPixmaFmats gisplay, count_returr)
Display *display,
int *count_return

display Specifies the connection to the X server.
count_return Returns the number of pixmap formats that are supported by the display.

The XListPixmapFormats function returns an array ofPixmapFormatValues structures that
describe the types of Z format images supported by the specified difplagufficient memory
is available, XListPixmapFormats returns NULL. To free the allocated storage for the
XPixmapFormatValues structures, usXFree.

The following lists the C language macros, their corresponding functiovalsmis that are for
other language bindings, and what daty thath return for the specified server and screen.
These are often used by toolkits as well as by simple applications.

18

Xlib — C Library libX11 1.3.3

ImageByteOrderdisplay)

int XImageByteOrderdisplay)
Display *display,
display Specifies the connection to the X server.
Both specify the required byte order for images for each scanline unit in XY format (bitmap) or

for each pixel value in Z format. The macro or function can return diiBBFirst or MSB-
First.

BitmapUnit (display)

int XBitmapUnit(display)
Display *display;

display Specifies the connection to the X server.

Both return the size of a bitmapcanline unit in bits. The scanline is calculated in multiples of
this value.

BitmapBitOrder fisplay)

int XBitmapBitOrder display)
Display *display;

display Specifies the connection to the X server.

Within each bitmap unit, the left-most bit in the bitmap as displayed on the screen is either the
least significant or most significant bit in the unit. This macro or function can le8BRirst or
MSBFirst .

BitmapRad (display)

int XBitmapPad (display)
Display *display;

display Specifies the connection to the X server.

Each scanline must be padded to a multiple of bits returned by this macro or function.

19

Xlib — C Library

DisplayHeight @lisplay, screen_numbér

int XDisplayHeight@isplay, screen_number
Display *display,
int screen_number

display Specifies the connection to the X server.

screen_number
Specifies the appropriate screen number on the host server.

Both return an integer that describes the height of the screen in pixels.

DisplayHeightMM (display, screen_numbér

int XDisplayHeightMM (display, screen_numbé@r
Display *display,
int screen_number

display Specifies the connection to the X server.

screen_number
Specifies the appropriate screen number on the host server.

Both return the height of the specified screen in millimeters.

DisplayWdth (display, screen_numbér

int XDisplayWdth (display, screen_numb@r
Display *display,
int screen_number

display Specifies the connection to the X server.
screen_number
Specifies the appropriate screen number on the host server.

Both return the width of the screen in pixels.

20

libX11 1.3.3

Xlib — C Library libX11 1.3.3

DisplayWdthMM (display, screen_number

int XDisplayWdthMM (display, screen_numbér
Display *display,
int screen_number

display Specifies the connection to the X server.

screen_number
Specifies the appropriate screen number on the host server.

Both return the width of the specified screen in millimeters.

2.2.3. Sceen Information Macros

The following lists the C language macros, their corresponding functiovalsmis that are for
other language bindings, and what daty theth can return. These macros or functions ak &k
pointer to the appropriate screen structure.

BlackPixelOfScreengcreer)

unsigned long XBlackPelOfScreengcreen
Screen screen

screen Specifies the appropriatcreenstructure.

Both return the black pixel value of the specified screen.

WhitePixelOfScreengcreer)

unsigned long XWhiteP&{OfScreengcreer)
Screen screen

screen Specifies the appropriatcreenstructure.

Both return the white pixel value of the specified screen.

CellsOfScreengcreer)

int XCellsOfScreengcreer)
Screen $creen

screen Specifies the appropriatcreenstructure.

Both return the number of colormap cells in the default colormap of the specified screen.

21

Xlib — C Library libX11 1.3.3

DefaultColormapOfScreemstreer)

Colormap XDe#ultColormapOfScrees¢reen
Screen screen

screen Specifies the appropriatécreenstructure.

Both return the default colormap of the specified screen.

DefaultDepthOfScreersgreen

int XDefaultDepthOfScreerscreer)
Screen screen

screen Specifies the appropriatcreenstructure.

Both return the depth of the root windo

DefaultGCOfScreerdcreer)

GC XDefaultGCOfScreerdcreen)
Screen screen

screen Specifies the appropriatcreenstructure.

Both return a default graphics context (GC) of the specified screen, which has the same depth as
the root windev of the screen. The GC mustueebe freed.

DefaultMisualOfScreengcreen

Visual *XDefaultMsualOfScreendgcreen)
Screen screen

screen Specifies the appropriatcreenstructure.

Both return the default visual of the specified scrdem.information on visual types, see section
3.1.

22

Xlib — C Library libX11 1.3.3

DoesBackingStorestreen

int XDoesBackingStorescreer)
Screen $creen

screen Specifies the appropriatécreenstructure.

Both return a value indicating whether the screen supports backing stores. The value returned can
be one ofwhenMapped, NotUseful, or Always (see section 3.2.4).

DoesSaeUnders gcreer)

Bool XDoesSaeUnders gcreen
Screen screen

screen Specifies the appropriatcreenstructure.

Both return a Boolean value indicating whether the screen suppestensiers. IfTrue, the
screen supportseauwnders. [fFalse, the screen does not supponesanders (see section 3.2.5).

DisplayOfScreendcreen

Display *XDisplayOfScreengcreer)
Screen Screen

screen Specifies the appropriatcreenstructure.

Both return the display of the specified screen.

int XScreenNumberOfScreesdreen
Screen screen

screen Specifies the appropriatcreenstructure.

The XScreenNumberOfScreenfunction returns the screen indeumber of the specified screen.

EventMaskOfScreersgreer)

long XEventMaskOfScreersgreer)
Screen $creen

screen Specifies the appropriatécreenstructure.

Both return the went mask of the root windeofor the specified screen at connection setup time.

23

Xlib — C Library libX11 1.3.3

WidthOfScreengcreer)

int XWidthOfScreengcreen
Screen screen

screen Specifies the appropriatécreenstructure.

Both return the width of the specified screen in pixels.

HeightOfScreendcreer)

int XHeightOfScreengcreer)
Screen screen

screen Specifies the appropriatcreenstructure.

Both return the height of the specified screen in pixels.

WidthMMOfScreengcreer)

int XWidthMMOfScreen §creen)
Screen screen

screen Specifies the appropriatcreenstructure.

Both return the width of the specified screen in millimeters.

HeightMMOfScreengcreer)

int XHeightMMOfScreengcreern)
Screen screen

screen Specifies the appropriatcreenstructure.

Both return the height of the specified screen in millimeters.

MaxCmapsOfScrees¢reer)

int XMaxCmapsOfScreerstreen)
Screen screen

screen Specifies the appropriatcreenstructure.

Both return the maximum number of installed colormaps supported by the specified screen (see

24

Xlib — C Library libX11 1.3.3

section 9.3).

MinCmapsOfScreersgreer)

int XMinCmapsOfScreerscreer)
Screen screen

screen Specifies the appropriatcreenstructure.

Both return the minimum number of installed colormaps supported by the specified screen (see
section 9.3).

PlanesOfScreerstreer)

int XPlanesOfScreersreer)
Screen creen

screen Specifies the appropriatecreenstructure.

Both return the depth of the root windo

RootWindavOfScreensgcreer)

Window XRootWindavOfScreengcreer)
Screen screen

screen Specifies the appropriatcreenstructure.

Both return the root windw of the specified screen.

2.3. Generatinga NoOperation Protocol Request
To execute aNoOperation protocol request, us€NoOp.

XNoOp (display)
Display *display;,

display Specifies the connection to the X server.

The XNoOp function sends &loOperation protocol request to the X seryérereby gercising
the connection.

2.4. Freeing Client-Created Data
To free in-memory data that was created by an Xlib functionXfsee.

25

Xlib — C Library libX11 1.3.3

XFree [data)
void *data;

data Specifies the data that is to be freed.

The XFree function is a general-purpose Xlib routine that frees the specified datianust use
it to free amy objects that were allocated by Xlib, unless an alternate function is explicitly speci-
fied for the object A NULL pointer cannot be passed to this function.

2.5. Closingthe Display
To dose a display or disconnect from the X seruse XCloseDisplay.

XCloseDisplaydisplay)
Display *display,

display Specifies the connection to the X server.

The XCloseDisplayfunction closes the connection to the X server for the display specified in the
Display structure and destroys all windows, resource Msndow, Font, Pixmap, Colormap,
Cursor, and GContext), or other resources that the client has created on this diaplegs the
close-down mode of the resource has been changeX $&€loseDownModg. Therefore,

these windows, resource IDs, and other resources shaddheereferenced again or an error

will be generated. Before exiting, you should ¢&tloseDisplay explicitly so that ag pending

errors are reported agCloseDisplay performs a finaXSync operation.

XCloseDisplay can generate BadGC error.

Xlib provides a function to permit the resources owned by a client tovewdter the client’s
connection is closedlo change a client dose-down mode, us¥SetCloseDownMode

XSetCloseDwnMode display, close_modg
Display *display;,
int close_mode
display Specifies the connection to the X server.

close_mode Specifies the client close-down modéu can pasPDestroyAll, RetainPerma-
nent, or RetainTemporary.

The XSetCloseDownModedefines what will happen to the clientesources at connection
close. Aconnection starts iDestroyAll mode. er information on what happens to the client’s
resources when the close_mode argumeRetminPermanentor RetainTemporary, see sec-
tion 2.6.

XSetCloseDownModecan generate BadValue error.

2.6. UsingX Server Connection Close Operations

When the X serves’annection to a client is closed either by an explicit cak@oseDisplay
or by a process that exits, the X server performs the following automatic operations:

26

Xlib — C Library libX11 1.3.3

. It disowns all selections owned by the client (¥&etSelectionOwne}.

. It performs anXUngrabPointer and XUngrabKeyboard if the client has actely
grabbed the pointer or theyboard.

. It performs anXUngrabServer if the client has grabbed the server.
. It releases all pass gabs made by the client.
. It marks all resources (including colormap entries) allocated by the client either as perma-

nent or temporandepending on whether the close-down modRésainPermanentor
RetainTemporary. Howeva, this does not prent other client applications from explic-
itly destroying the resources (sE&etCloseDownModsg.

When the close-down mode[XestroyAll, the X server destroys all of a clientesources as fol-
lows:

. It examines each windwin the clients saveset to determine if it is an inferior (subwin-
dow) of a windav created by the client. (Thewsaset is a list of other clients’ windows
that are referred to asv&sset windeovs.) If so, the X server reparents theesaet window
to the closest ancestor so that theesset windav is not an inferior of a winde created by
the client. The reparenting b unchanged the absolute coordinates (with respect to the
root window) of the upper-left outer corner of theesaet windav.

. It performs aMapWindow request on the se-set windav if the s&e-set windav is
unmapped. Th& server does thisven if the sae-set windev was not an inferior of a
window created by the client.

. It destroys all windows created by the client.

. It performs the appropriate free request on each nonwinesource created by the client
in the server (for examplé&ont, Pixmap, Cursor, Colormap, and GContext).

. It frees all colors and colormap entries allocated by a client application.

Additional processing occurs when the last connection to the X server closes. An X server goes
through a cycle of having no connections and having some connections. When the last connec-
tion to the X server closes as a result of a connection closing with the close nietsrof/All ,

the X server does the following:

. It resets its state as if it had just been started. The X server begins by destroying all linger-
ing resources from clients thatveaierminated inRetainPermanentor RetainTempo-
rary mode.

. It deletes all but the predefined atom identifiers.

. It deletes all properties on all root windows (see section 4.3).

. It resets all device maps and attributes (for exampledick, bell volume, and accelera-
tion) as well as the access control list.

. It restores the standard root tiles and cursors.

. It restores the default font path.

. It restores the input focus to st&einterRoot.

However, the X server does not reset if you close a connection with a close-down mode set to
RetainPermanentor RetainTemporary.

2.7. UsingXlib with Threads

On systems that kia threads, support may be provided to permit multiple threads to use Xlib
concurrently.

27

Xlib — C Library libX11 1.3.3

To initialize support for concurrent threads, udeitThreads .

Status XInitThreads);

The XInitThreads function initializes Xlib support for concurrent threads. This function must
be the first Xlib function a multi-threaded program calls, and it must complete beyarthan

Xlib call is made. This function returns a nonzero status if initialization was successful; other-
wise, it returns zero. On systems that do not support threads, this funatéys edturns zero.

It is only necessary to call this function if multiple threads might use Xlib concutréhdly

calls to Xlib functions are protected by some other access mechanism (for example, a mutual
exclusion lock in a toolkit or through explicit client programming), Xlib thread initialization is
not required. It is recommended that single-threaded programs not call this function.

To lock a display acrosss®al Xlib calls, useXLockDisplay .

void XLockDisplay (display)
Display *display;

display Specifies the connection to the X server.

The XLockDisplay function locks out all other threads from using the specified dis@ther
threads attempting to use the display will block until the display is unlocked by this thread.
Nested calls tcXLockDisplay work correctly; the display will not actually be unlocked until
XUnlockDisplay has been called the same number of timeslagkDisplay. This function
has no effect unless Xlib was successfully initialized for threads x@mtrhreads .

To unlock a displayuse XUnlockDisplay.

void XUnlockDisplay display)
Display *display;

display Specifies the connection to the X server.

The XUnlockDisplay function allows other threads to use the specified displayad\ry

threads that hae Hocked on the display are allowed to continue. Nested locking works correctly;
if XLockDisplay has been called multiple times by a thread, theimlockDisplay must be

called an equal number of times before the display is actually wdockhisfunction has no

effect unless Xlib was successfully initialized for threads uXimitThreads .

2.8. Usinginternal Connections

In addition to the connection to the X sepnaar Xlib implementation may require connections to
other kinds of servers (for example, to input method servers as described in chapieplkik

and clients that use multiple displays, or that use displays in combination with other inputs, need
to obtain these additional connections to correctly block until inpweikable and need to

process that input when it igalable. Simpleclients that use a single display and block for input

in an Xlib event function do not need to use these facilities.

28

Xlib — C Library libX11 1.3.3

To track internal connections for a displage XAddConnectionWatch.

typedef void (*XConnection\tchProc)(lisplay, client_data fd, opening watch_data
Display *display;,
XPointerclient_datg
int fd;
Bool opening
XPointer *watch_data

Status XAddConnectionslich display, procedure client_datg
Display *display;,
XWatchProgrocedure
XPointerclient_datag

display Specifies the connection to the X server.
procedure Specifies the procedure to be called.
client data Specifies the additional client data.

The XAddConnectionWatch function registers a procedure to be called each time Xlib opens or
closes an internal connection for the specified displéne procedure is passed the dispthg

specified client_data, the file descriptor for the connection, a Boolean indicating whether the con-
nection is being opened or closed, and a pointer to a locationvatepriatch data. If opening is
True, the procedure can store a pointer togtd data in the location pointed to by watch_data;
when the procedure is later called for this same connection and opeRaigasthe location

pointed to by watch_data will hold this samevae data pointer.

This function can be called atyatime after a display is opened. If internal connections already
exist, the registered procedure will immediately be called for each of them, b&&dConnec-
tionWatch returns. XAddConnectionWatch returns a nonzero status if the procedure is suc-
cessfully registered; otherwise, it returns zero.

The registered procedure should not cayl dtib functions. If the procedure directly or indi-

rectly causes the state of internal connections or watch procedures to change, the result is not
defined. IfXlib has been initialized for threads, the procedure is called with the display locked
and the result of a call by the procedure tphb function that locks the display is not defined
unless thexaecuting thread has externally locked the display u3ihgckDisplay .

To dop tracking internal connections for a displase XRemoveConnectionWatch.

Status XRemeeConnectionVétch display, procedure client_datg
Display *display;
XWatchProgrocedure
XPointerclient_datg
display Specifies the connection to the X server.
procedure Specifies the procedure to be called.

client_data Specifies the additional client data.

The XRemoveConnectionWatch function remwees a peviously registered connection watch
procedure. Thelient_data must match the client_data used when the procedure was initially

29

Xlib — C Library libX11 1.3.3

registered.

To process input on an internal connection, ¥g&ocessinternalConnection

void XProcesslnternalConnectiotigplay, fd)

Display *display,

int fd;
display Specifies the connection to the X server.
fd Specifies the file descriptor.

The XProcessinternalConnectionfunction processes inputailable on an internal connection.
This function should be called for an internal connection only after an operating system facility
(for example selector poll) has indicated that input iva@lable; otherwise, the effect is not
defined.

To dbtain all of the current internal connections for a displag XInternalConnectionNum-
bers.

Status XinternalConnectionNumbedégplay, fd_return, count_returr)
Display *display;
int ** fd_return;
int *count_return

display Specifies the connection to the X server.

fd_return Returns the file descriptors.
count_return Returns the number of file descriptors.

The XinternalConnectionNumbers function returns a list of the file descriptors for all internal
connections currently open for the specified displa$en the allocated list is no longer needed,
free it by usingXFree. This functions returns a nonzero status if the list is successfully allo-
cated; otherwise, it returns zero.

30

Xlib — C Library libX11 1.3.3

Chapter 3

Window Functions

In the X Windav System, a winde is a rectangular area on the screen that lets you giaphic
output. Clientapplications can displaywerlapping and nested windows on one or more screens
that are drien by X servers on one or more machines. Clients who want to create windows must
first connect their program to the X server by call@penDisplay. This chapter begins with a
discussion of visual types and windattributes. Thechapter continues with a discussion of the
Xlib functions you can use to:

. Create windows

. Destrgy windows

. Map windows

. Unmap windows

. Configure windows

. Change windw stacking order

. Change windw attributes

This chapter also identifies the windactions that may generateents.

Note that it is vital that your application conform to the establishegentions for communicat-
ing with windov managers for it to work well with the various windmanagers in use (see sec-
tion 14.1). Toolkits generally adhere to these eemtions for you, relieving you of the burden.
Toolkits also often supersede nydininctions in this chapter with versions of theimo For more
information, refer to the documentation for the toolkit that you are using.

3.1. Msual Types

On some display hardware, it may be possible to deal with color resources in more than one way.
For example, you may be able to deal with a screen of either 12-bit depth with arbitrary mapping
of pixel to color (pseudo-color) or 24-bit depth with 8 bits of the pixel dedicated to each of red,
green, and blue. These different ways of dealing with the visual aspects of the screen are called
visuals. er each screen of the displdyere may be a list of valid visual types supported at dif-
ferent depths of the screen. Because default windows and visual types are defined for each
screen, most simple applications need not deal with this complédity provides macros and
functions that return the default root wingdhe default depth of the default root wingand

the default visual type (see sections 2.2.1 and 16.7).

Xlib uses an opaqu¥isual structure that contains information about the possible color mapping.
The visual utility functions (see section 16.7) useXafisuallnfo structure to return this infor-

mation to an application. The members of this structure pertinent to this discussion are class,
red_mask, green_mask, blue_mask, bits_per_rgb, and colormap_size. The class member speci-
fies one of the possible visual classes of the screen and &tatlo&ray, StaticColor, Tr ue-

Color, GrayScale, PseudoColor, or DirectColor .

The following concepts may servo make the explanation of visual types clear@he screen
can be color or grayscale, carvba olormap that is writable or read-opbnd can also he a
colormap whose indices are decomposed into separate RGB pieces, provided one is not on a

31

Xlib — C Library libX11 1.3.3

grayscale screen. This leads to the following diagram:

Color Gray-scale
R/O R/W R/IO R/W

Undecomposed Static Pseudo StaticGray

Colormap Color| Color Gray | Scale
Decomposed roe Direct
Colormap Color| Color

Conceptuallyas ech pixel is read out of video memory for display on the screen, it goes through
a look-up stage by indexing into a colormap. Colormaps can be manipulated arbitrarily on some
hardware, in limited ways on other hardware, and not at all on otherdrardwhevisual types

affect the colormap and the RGB values in the following ways:

. For PseudoColor, a pxel value indees a ®lormap to produce independent RGB values,
and the RGB values can be changed dynamically.

. GrayScaleis treated the same way BseudoColorexcept that the primary that gés the
screen is undefined. Thus, the client shouldhgd store the same value for red, green, and
blue in the colormaps.

. For DirectColor, a gxel value is decomposed into separate RGB subfields, and each sub-
field separately indes the colormap for the correspondinglwe. TheRGB values can be
changed dynamically.

. TrueColor is treated the same way B#rectColor except that the colormap has prede-
fined, read-only RGBalues. Thes®GB values are server dependent but provide linear or
near-linear ramps in each primary.

. StaticColor is treated the same way BseudoColorexcept that the colormap has prede-
fined, read-onlyserver-dependent RGB values.

. StaticGray is treated the same way StaticColor except that the RGB values are equal
for ary single pixel value, thus resulting in shades of gr&yaticGray with a two-entry
colormap can be thought of as monochrome.

The red_mask, green_mask, and blue_mask members are only defib@edtColor and

TrueColor. Each has one contiguous set of bits with no intersections. The bits_per_rgb member
specifies the log base 2 of the number of distinct color values (individually) of red, green, and
blue. ActualRGB values are unsigned 16-bit numbers. The colormap_size member defines the
number of gailable colormap entries in a newly created colormiggr. DirectColor and Tr ue-

Color, this is the size of an individual pixel subfield.

To obtain the visual ID from &isual, use XVisualIDFromVisual .

VisuallD XVisuallDFrom\isual (visual)
Visual *visual,

visual Specifies the visual type.

The XVisuallDFromVisual function returns the visual ID for the specified visual type.

32

Xlib — C Library libX11 1.3.3

3.2. Window Attributes

All InputOutput windows ha&e a lorder width of zero or more pixels, an optional background,
an event suppression mask (which suppresses propagatiomatsdrom children), and a prop-
erty list (see section 4.3). The winddorder and background can be a solid color or a pattern,
called a tile. All windows except the rootveaa arent and are clipped by their parent. If a win-
dow is gacked on top of another windpit obscures that other windofor the purpose of input.

If a window has a background (almost all do), it obscures the other wihalopurposes of out-
put. Attemptdo output to the obscured area do nothing, and no imeatse(for example,

pointer motion) are generated for the obscured area.

Windows also hae asociated property lists (see section 4.3).

Both InputOutput andInputOnly windows hae the following common attributes, which are
the only attributes of amputOnly window:

. win-gravity

. event-mask

. do-not-propagate-mask

. override-redirect

. cursor

If you specify ag other attributes for aimputOnly window, a BadMatch error results.

InputOnly windows are used for controlling inputents in situations wherputOutput win-
dows are unnecessarinputOnly windows are invisible; can only be used to control such things
as cursors, inputvent generation, and grabbing; and cannot be usedyigraphics requests.

Note thatinputOnly windows cannot ha InputOutput windows as inferiors.

Windows hae lorders of a programmable width and pattern as well as a background pattern or
tile. Pixel values can be used for solid colors. The background and border pixmaps can be
destroyed immediately after creating the wiwdbno further explicit references to them are to be
made. Theattern can either be reladito the parent or absolute. KarentRelative, the par-

ent’s background is used.

When windows are first created, yhage not visible (not mapped) on the screeny Aatput to a
window that is not visible on the screen and that does nat becking store will be discarded.

An application may wish to create a windtong before it is mapped to the screen. When a win-
dow is eventually mapped to the screen (usiiylapWindow), the X server generates an
Exposeevent for the windav if backing store has not been maintained.

A windowv manager canwerride your choice of size, border width, and position for a tog-le

window. Your program must be prepared to use the actual size and position of the top. windo

is not acceptable for a client application to resize itself unless in direct response to a human com-
mand to do so. Instead, either your program should use the speattogt, or if the space is too

small for aly useful work, your program might ask the user to resize the windbe border of

your top-level window is considered fair game for windomanagers.

To st an attribute of a windg set the appropriate member of tK&etWindowAttributes struc-
ture and OR in the corresponding value bitmask in your subsequent c&llseate Window
and XChangeWindowAttributes, or use one of the other ceenience functions that set the
appropriate attrite. Thesymbols for the value mask bits and X&etWindowAttributes
structure are:

33

Xlib — C Library libX11 1.3.3

/* Window attribute value mask bits */

#define CWBackPixmap (1L<<0)

#define CWBackPixel (1L<<1)

#define CWBorderPixmap (1L<<2)

#define CWBorderPixel (1L<<3)

#define CWBItGravity (1L<<4)

#define CWWinGravity (1L<<5)

#define CWBackingStore (1L<<6)

#define CWBackingPlanes (AL<<7)

#define CWBackingPixel (1L<<8)

#define CWOverrideRedirect (1L<<9)

#define CWSaveUnder (1L<<10)

#define CWEventMask (1L<<11)

#define CWDontPropagate (1L<<12)

#define CWColormap (1L<<13)

#define CWCursor (1L<<14)

/* Values */

typedef struct {
Pixmap background_pixmap; [* background, None, or ParentRefdti
unsigned long background_ pix /* background pixel */
Pixmap border_pixmap; /* border of the windor CopyFromParent */
unsigned long border_ ek /* border pixel value */
int bit_gravity; /* one of bit gravity values */
int win_gravity; /* one of the winde gravity values */
int backing_store; I* NotUseful, WhenMapped walys */
unsigned long backing_planes; /* planes to be preserved if possible */
unsigned long backing_pek /* value to use in restoring planes */
Bool sare_under; /*should bits under be wad? (popups) */
long event_mask; [*set of @ents that should be ged */
long do_not_propage_mask; I’set of @ents that should not propagate */
Bool override_redirect; /*boolean value forwerride_redirect */
Colormap colormap; [* color map to be associated with wintlo
Cursor cursor; /* cursor to be displayed (or None) */

} X SetWindowAttributes;

The following lists the defaults for each windattribute and indicates whether the attribute is
applicable tonputOutput andInputOnly windows:

Attribute Default InputOutput InputOnly
background-pixmap None Yes No
background-pigl Undefined Yes No
border-pixmap CopyFromParent Yes No
border-pixel Undefined Yes No
bit-gravity ForgetGravity Yes No
win-gravity NorthWestGravity Yes Yes

34

Xlib — C Library libX11 1.3.3

Attribute Default InputOutput InputOnly
backing-store NotUseful Yes No
backing-planes Albnes ¥s No
backing-piel Zero Yes No
save-under False Yes No
event-mask emptyget Yes Yes
do-not-propagte-mask emptget es Yes
overide-redirect False Yes Yes
colormap CopyFromParent Yes No
cursor None Yes Yes

3.2.1. Backgound Attribute

Only InputOutput windows can hee a lackground. Yu can set the background of an
InputOutput window by using a pixel or a pixmap.

The background-pixmap attribute of a wimdspecifies the pixmap to be used for a window’s
background. Thipixmap can be of arsize, although some sizes may be faster than others. The
background-pixel attribute of a wingspecifies a pixel value used to paint a windotbeck-

ground in a single color.

You can set the background-pixmap to a pixmidpne (default), orParentRelative. You can

set the background-pixel of a windao any pixel value (no defult). If you specify a back-
ground-pixel, it @errides either the default background-pixmap or alue you may ha st in

the background-pixmapA pixmap of an undefined size that is filled with the background-pixel is
used for the background. Range checking is not performed on the background pixel; it simply is
truncated to the appropriate number of bits.

If you set the background-pixmap, itarides the defult. Thebackground-pixmap and the win-
dow must hae the same depth, orBadMatch error results. If you set background-pixmap to
None, the windav has no defined background. If you set the background-pixmBpremtRel-
ative:

. The parent windovg background-pixmap is used. The child wimddoweve, must hae
the same depth as its parent, @aMatch error results.

. If the parent winde has a background-pixmap dlone, the windav also has a back-
ground-pixmap oNone.

. A copy of the parent windovg background-pixmap is not made. The parebsickground-
pixmap is examined each time the child windobackground-pixmap is required.

. The background tile originabys aligns with the parent windosvbackground tile origin.
If the background-pixmap is n®tarentRelative, the background tile origin is the child
window’s arigin.
Setting a n& background, whether by setting background-pixmap or background-piraiides
ary previous background. The background-pixmap can be freed immediately if no further
explicit reference is made to it (the X server will keep aydopuse when needed). If you later
draw into the pixmap used for the background, what happens is undefined because the X imple-
mentation is free to maka ©py of the pixmap or to use the same pixmap.

When no valid contents argailable for regions of a winde and either the regions are visible or
the server is maintaining backing store, the server automatically tiles the regions with the win-
dow's background unless the winddias a background dfone. If the background idlone, the

35

Xlib — C Library libX11 1.3.3

previous screen contents from other windows of the same depth as theraiadamply left in
place as long as the contents come from the parent of thewvardim nferior of the parent.
Otherwise, the initial contents of the exposed regions are undefihguhseevents are then gen-
erated for the regionsyen if the background-pixmap iSone (see section 10.9).

3.2.2. BorderAttribute

Only InputOutput windows can hee a lorder You can set the border of &mputOutput win-

dow by using a pixel or a pixmap.

The border-pixmap attribute of a windapecifies the pixmap to be used for a windoidrder.

The border-pixel attribute of a windspecifies a pixmap of undefined size filled with that pixel
be used for a window’'border Range checking is not performed on the background pixel; it sim-
ply is truncated to the appropriate number of bits. The border tile origiwagsathe same as the
background tile origin.

You can also set the border-pixmap to a pixmap gfsme (some may be faster than others) or to
CopyFromParent (default). You can set the border-pixel toygpixel value (no default).

If you set a border-pixmap, iverrides the defult. Theborder-pixmap and the windomust

have the same depth, orBadMatch error results. If you set the border-pixmapdopy-
FromParent, the parent windovg border-pixmap is copied. Subsequent changes to the parent
window’s border attribute do not affect the child windoHoweve, the child windev must hae

the same depth as the parent windar a BadMatch error results.

The border-pixmap can be freed immediately if no further explicit reference is made to it. If you
later drav into the pixmap used for the borgehat happens is undefined because the X imple-
mentation is free either to mala ©py of the pixmap or to use the same pixmap. If you specify a
border-pixel, it @errides either the default border-pixmap oy &alue you may hze <t in the
borderpixmap. Allpixels in the windows border will be set to the border-ix Settinga new

border whether by setting border-pixel or by setting border-pixmagrriaes ay previous bor-

der.

Output to a windw is dways clipped to the inside of the winao Therefore, graphics operations
never affect the winda border.

3.2.3. Gravity Attributes

The bit gravity of a windw defines which region of the windoshould be retained when an
InputOutput window is resized. Thelefault value for the bit-gravity attribute ForgetGrav-

ity . The windav gravity of a windev allows you to define he the InputOutput or InputOnly
window should be repositioned if its parent is resized. The default value for the win-gravity
attribute isNorthWestGravity .

If the inside width or height of a windois not changed and if the windas moved or its border

is changed, then the contents of the wim@ce not lost but mee with the windav. Changing the
inside width or height of the winglocauses its contents to be ved or lost (depending on the
bit-gravity of the window) and causes children to be reconfigured (depending on their win-grav-
ity). For a change of width and height, the (x, y) pairs are defined:

Gravity Dir ection Coordinates

NorthWestGravity (0, 0)
NorthGravity (Width/2, 0)

36

Xlib — C Library libX11 1.3.3

NorthEastGravity (Width, 0)

WestGravity (0, Height/2)
CenterGravity (Width/2, Height/2)
EastGravity (Width, Height/2)
SouthWestGravity (0, Height)
SouthGravity (Width/2, Height)

SouthEastGravity (Width, Height)

When a windw with one of these bit-gravity values is resized, the corresponding pair defines the
change in position of each pixel in the wimdowhen a windw with one of these win-gravities

has its parent windoresized, the corresponding pair defines the change in position of the win-
dow within the parent. When a windads so epositioned, &ravityNotify event is generated

(see section 10.10.5).

A bit-gravity of StaticGravity indicates that the contents or origin should notenelative ©

the origin of the root winde. If the change in size of the winslds coupled with a change in
position (X, y), then for bit-gravity the change in position of each pixel is (-x, —y), and for win-
gravity the change in position of a child when its parent is so resized is (-x, —y). No&ahat
icGravity still only takes effect when the width or height of the wind® changed, not when the
window is moved.

A bit-gravity of ForgetGravity indicates that the window'contents are alays discarded after a

size change,ven if a backing store or s@& under has been requested. The wimd®tiled with

its background and zero or mdegposeevents are generated. If no background is defined, the
existing screen contents are not altered. Some X servers may also ignore the specified bit-gravity
and alvays generaté&Exposeeveants.

The contents and borders of inferiors are not affected by their Eaoegravity. A server is
permitted to ignore the specified bit-gravity and Berget instead.

A win-gravity of UnmapGravity is like NorthWestGravity (the windav is not moved), except
the child is also unmapped when the parent is resized, addraapNotify event is generated.

3.2.4. BackingStore Attribute

Some implementations of the X server may choose to maintain the contémst@utput

windows. Ifthe X server maintains the contents of a windbe off-screen sad pixels are

known as backing store. The backing store advises the X server on what to do with the contents
of a windav. The backing-store attribute can be seNmUseful (default), WhenMapped, or

Always.

A backing-store attribute dflotUseful advises the X server that maintaining contents is unneces-
sary dthough some X implementations may still choose to maintain contents and, therefore, not
generateExposeevents. Abacking-store attribute avhenMapped advises the X server that
maintaining contents of obscured regions when the wingonapped would be beneficial. In

this case, the server may generat&aposeevent when the winde is created. Abacking-store
attribute ofAlways advises the X server that maintaining contemnés hen the windw is

unmapped would be beneficial. Even if the wiwds larger than its parent, this is a request to

the X server to maintain complete contents, not just the region within the parenivwbioatad-

aries. Whilethe X server maintains the wind@adontents,Exposeevents normally are not gen-
erated, but the X server may stop maintaining contentsdinae.

When the contents of obscured regions of a wind@ being maintained, regions obscured by
noninferior windows are included in the destination of graphics requests (and source, when the
window is the source). Hower, regons obscured by inferior windows are not included.

37

Xlib — C Library libX11 1.3.3

3.2.5. Sae Under Flag

Some server implementations may presenntents ofinputOutput windows under other
InputOutput windows. Thisis not the same as preserving the contents of a wihadioyou.

You may get better visual appeal if transient windows (for example, pop-up menus) request that
the system presesvthe screen contents under them, so the temporarily obscured applications do
not hare repaint.

You can set the s@-under flag tolr ue or False (default). If save-under isTr ue, the X server is
advised that, when this windds mapped, saving the contents of windows it obscures would be
beneficial.

3.2.6. BackingPlanes and Backing Pixel Attributes

You can set backing planes to indicate (with bits set to 1) which bit planeslopat©utput

window hold dynamic data that must be preserved in backing store and durengndars. The

default value for the backing-planes attribute is all bits set toli.can set backing pixel to

specify what bits to use in planes novaed by backing planes. The default value for the back-
ing-pixel attribute is all bits set to 0. The X server is free e saly the specified bit planes in

the backing store or thew&awnder and is free to regenerate the remaining planes with the speci-
fied pixel \alue. Ary extraneous bits in these values (that is, those bits beyond the specified depth
of the window) may be simply ignored. If you request backing storeverwsaers, you should

use these members to minimize the amount of off-screen memory required to store your windo

3.2.7. Ewent Mask and Do Not Propagate Mask Attributes

The event mask defines whichvents the client is interested in for tHigputOutput or Inpu-
tOnly window (or, for some eent types, inferiors of this winadg). Theevent mask is the bitwise
inclusive OR of zero or more of the validvent mask bits.You can specify that no maskable
events are reported by settiddpEventMask (default).

The do-not-propagate-mask attribute defines whiehte should not be propagated to ancestor
windows when no client has theeat type selected in thiputOutput or InputOnly window.
The do-not-propagate-mask is the bitwise ine€IR of zero or more of the following masks:
KeyPress KeyRelease ButtonPress, ButtonRelease PointerMotion , Button1lMotion , But-
ton2Motion, Button3Motion , Button4Motion , Button5Motion , and ButtonMotion . You can
specify that all gents are propagated by settiNgEventMask (default).

3.2.8. Owerride Redirect Flag

To control windav placement or to add decoration, a windmanager often needs to intercept
(redirect) ag map or configure request. Pop-up windows, hareoften need to be mapped
without a windev manager getting in the waylo control whether annputOutput or Inpu-
tOnly window is to ignore these structure control facilities, use terale-redirect flag.

The override-redirect flag specifies whether map and configure requests on thiswshwdd
overide aSubstructureRedirectMask on the parentYou can set the werride-redirect flag to
True or False (default). Window managers use this information teoa tampering with pop-up
windows (see also chapter 14).

3.2.9. ColormapAttribute

The colormap attribute specifies which colormap best reflects the true colordrgfut@utput
window. The colormap must la the same visual type as the wimdar a BadMatch error

results. Xservers capable of supporting multiple hardware colormaps can use this information,
and windev managers can use it for callsXtnstallColormap . You can set the colormap

38

Xlib — C Library libX11 1.3.3

attribute to a colormap or tGopyFromParent (default).

If you set the colormap t€opyFromParent, the parent windovg clormap is copied and used

by its child. Howeer, the child windev must hae the same visual type as the parent, Bad-

Match error results. The parent winganust not hee a olormap ofNone, or aBadMatch

error results. The colormap is copied by sharing the colormap object between the child and par-
ent, not by making a complete gogf the colormap contents. Subsequent changes to the parent
window’s wlormap attribute do not affect the child windo

3.2.10. CursorAttribute

The cursor attribute specifies which cursor is to be used when the pointer isnput@utput
or InputOnly window. You can set the cursor to a cursoName (default).

If you set the cursor tblone, the parens aursor is used when the pointer is in thputOutput

or InputOnly window, and ary change in the parestaursor will cause an immediate change in
the displayed cursoBYy calling XFreeCursor, the cursor can be freed immediately as long as
no further explicit reference to it is made.

3.3. Creating Windows

Xlib provides basic ways for creating windows, and toolkits often supply highgfiections
specifically for creating and placing topstwindows, which are discussed in the appropriate
toolkit documentation. If you do not use a toolkit, hgareyou must provide some standard
information or hints for the windo manager by using the Xlib inter-client communication func-
tions (see chapter 14).

If you use Xlib to create your own topvkt windows (direct children of the root window), you
must obserg the following rules so that all applications interact reasonably across the different
styles of windav management:

. You must neer fight with the windav manager for the size or placement of your toglle
window.

. You must be able to deal with whetesize windav you get, gen if this means that your
application just prints a messageeliPlease ma& me ligger” in its windaw.

. You should only attempt to resize orvadop-level windows in direct response to a user
request. Ifa request to change the size of a togellevindow fails, you must be prepared to
live with what you get.You are free to resize or me the children of top-kel windows as
necessary(Toolkits often hae facilities for automatic relayout.)

. If you do not use a toolkit that automatically sets standard wipdaperties, you should
set these properties for topstwindows before mapping them.

For further information, see chapter 14 andltiter-Client Communication Conventions Manual

XCreateWindow is the more general function that allows you to set specific wirattabutes
when you create a windo XCreateSimpleWindow creates a winde that inherits its attributes
from its parent wind.

The X server acts as lifiputOnly windows do not exist for the purposes of graphics requests,
exposure processing, andsibilityNotify events. AnlnputOnly window cannot be used as a
dravable (that is, as a source or destination for graphics requésm)tOnly and InputOutput
windows act identically in other respects (properties, grabs, input control, and so on). Extension
packages can define other classes of windows.

To aeate an unmapped winga@nd set its windw attributes, useXCreateWindow.

39

Xlib — C Library libX11 1.3.3

Window X CreateWindw (display, parent, x, y, width, height, border_width depth

class visual, valuemaskattributes

Display *display,
Windowparent;

intx,y;

unsigned intvidth, height,
unsigned inborder_width

int depth

unsigned intlass

Visual *visual

unsigned longaluemask
XSetWindowAttributes attributes

display
parent

X
y

width
height

border_width
depth

class

visual

valuemask

attributes

Specifies the connection to the X server.
Specifies the parent windo

Specify the x and y coordinates, which are the top-left outside corner of the cre-
ated windows borders and are relag o the inside of the parent windaswor-
ders.

Specify the width and height, which are the created wirglside dimensions
and do not include the created windswrders. Thelimensions must be
nonzero, or BadValue error results.

Specifies the width of the created windsworder in pixels.

Specifies the window’depth. Adepth of CopyFromParent means the depth is
taken from the parent.

Specifies the created windsadass. You can pasgnputOutput , InputOnly ,
or CopyFromParent. A class ofCopyFromParent means the class is taken
from the parent.

Specifies the visual typeA visual of CopyFromParent means the visual type is
taken from the parent.

Specifies which windw attributes are defined in the attributeguament. This
mask is the bitwise inclug OR of the valid attribute mask bits. If valuemask is
zero, the attributes are ignored and are not referenced.

Specifies the structure from which the values (as specified by the value mask) are
to be talken. Thevalue mask should v the appropriate bits set to indicate
which attributes hae been set in the structure.

The XCreateWindow function creates an unmapped subwindor a specified parent winap
returns the windw ID of the created winde, and causes the X server to generatreateNo-
tify event. Thecreated windw is placed on top in the stacking order with respect to siblings.

The coordinate system has the X axis horizontal and the Y axis vertical with the origin [0, 0] at
the upper-left cornerCoordinates are integral, in terms of pixels, and coincide with pixel centers.
Each windav and pixmap has its own coordinate systefor a window, the origin is inside the
border at the inside, upper-left corner.

The border_width for amputOnly window must be zero, or BadMatch error results.For
classinputOutput , the visual type and depth must be a combination supported for the screen, or

40

Xlib — C Library libX11 1.3.3

a BadMatch error results. The depth need not be the same as the parent, but the parent must not
be a windav of classInputOnly , or aBadMatch error results.For an InputOnly window, the

depth must be zero, and the visual must be one supported by the screen. If either condition is not
met, aBadMatch error results. The parent wingphoweve, may hare any @pth and class. If

you specify ap invdid window attribute for a winda, a BadMatch error results.

The created winde is not yet displayed (mapped) on the useisplay. To display the windw,
call XMapWindow . The nev window initially uses the same cursor as its parénhew airsor
can be defined for the wevindow by calling XDefineCursor. The windav will not be visible
on the screen unless it and all of its ancestors are mapped and it is not obscuyeaf g an
ancestors.

XCreateWindow can generatBadAlloc, BadColor, BadCursor, BadMatch, BadPixmap,
BadValue, and BadWindow errors.

To aeate an unmappddputOutput subwindav of a gven parent windav, use XCreateSim-
pleWindow.

Window XCreateSimpleWindwe (display, parent, x, y, width, height, border_width
border, background
Display *display;
Window parent,
intx,y;
unsigned inwidth, height
unsigned inborder_width
unsigned londporder,
unsigned londpackground

display Specifies the connection to the X server.

parent Specifies the parent windo

X

y Specify the x and y coordinates, which are the top-left outside corner of the new
window’s borders and are relag © the inside of the parent windosworders.

width

height Specify the width and height, which are the created winslmside dimensions

and do not include the created windswdrders. Thalimensions must be
nonzero, or 8adValue error results.

border_width Specifies the width of the created windsworder in pixels.
border Specifies the border pixel value of the windo
background Specifies the background pixel value of the wimdo

The XCreateSimpleWindow function creates an unmappbegutOutput subwindav for a
specified parent winag returns the windw ID of the created windme, and causes the X server to
generate LreateNotify event. Thecreated windw is placed on top in the stacking order with
respect to siblings. Anpart of the windw that extends outside its parent windis dipped.

The border_width for amputOnly window must be zero, or BadMatch error results.XCre-
ateSimpleWindow inherits its depth, class, and visual from its parent. All other window
attributes, except background and bortiavetheir default values.

41

Xlib — C Library libX11 1.3.3

XCreateSimpleWindow can generatBadAlloc, BadMatch, BadValue, and BadWindow
errors.

3.4. Destoying Windows

Xlib provides functions that you can use to dgsaavindow or destrg all subwindows of a win-
dow.

To destroy a window and all of its subwindows, uséDestroyWindow.

XDestroyWindav (display, w)
Display *display,
Windoww;

display Specifies the connection to the X server.
w Specifies the winde.

The XDestroyWindow function destroys the specified windas well as all of its subwindows

and causes the X server to genera®eatroyNotify event for each winde. The windav should
never be referenced agjn. If the windav specified by the w argument is mapped, it is unmapped
automatically The ordering of thé®estroyNotify events is such that for grgiven window being
destroyedDestroyNotify is generated on gnnferiors of the windw before being generated on
the windav itself. Theordering among siblings and across subhierarchies is not otherwise con-
strained. Ifthe windav you specified is a root windg no windows are destyed. Destrging a
mapped winde will generateExposeevents on other windows that were obscured by the win-
dow being destroyed.

XDestroyWindow can generate BadWindow error.
To destrg al subwindows of a specified windp use XDestroySubwindows

XDestroySubwindws (display, w)
Display *display;
Windoww;

display Specifies the connection to the X server.
w Specifies the winde.

The XDestroySubwindowsfunction destroys all inferior windows of the specified wiwdim
bottom-to-top stacking ordeit causes the X server to generat®estroyNotify event for each
window. If any mapped subwindows were actually destroy¢DestroySubwindowscauses the

X server to generatExposeevents on the specified windo This is much more efficient than
deleting mag windows one at a time because much of the work need be performed only once for
all of the windows, rather than for each wimdoThe subwindows should we be referenced

again.

XDestroySubwindowscan generate BadWindow error.

3.5. MappingWindows

A window is considered mapped if akMapWindow call has been made on it. It may not be
visible on the screen for one of the following reasons:

42

Xlib — C Library libX11 1.3.3

. It is obscured by another opaque windo
. One of its ancestors is not mapped.
. It is entirely clipped by an ancestor.

Exposeevents are generated for the windavhen part or all of it becomes visible on the screen.
A client receves the Exposeevents only if it has asked for thenwindows retain their position
in the stacking order when there unmapped.

A window manager may want to control the placement of subwitsddf SubstructureRedi-
rectMask has been selected by a wimdmanager on a parent wingqusually a root window),

a map request initiated by other clients on a child wimanot performed, and the windoman-
ager is sent MapRequestevent. However, if the averride-redirect flag on the child had been set
to True (usually only on pop-up menus), the map request is performed.

A tiling window manager might decide to reposition and resize other clients’ windows and then
decide to map the windoto its final location.A window manager that wants to provide decora-
tion might reparent the child into a frame firor further information, see sections 3.2.8 and
10.10. Onlya sngle client at a time can select fSubstructureRedirectMask.

Similarly, a $ngle client can select fdResizeRedirectMaskon a parent winde. Then, any
attempt to resize the winddby another client is suppressed, and the client vesei Resiz-
eRequestevant.

To map a gven window, use XMapWindow .

XMapWindow (display, w)
Display *display,
Windoww;

display Specifies the connection to the X server.
w Specifies the winde.

The XMapWindow function maps the windoand all of its subwindows that txa had map
requests. Mapping window that has an unmapped ancestor does not display thewvbudo
marks it as eligible for display when the ancestor becomes mapped. Suchwa isinalted
unviewable. Whenall its ancestors are mapped, the windecomes vieable and will be visi-
ble on the screen if it is not obscured by another windthis function has no effect if the win-
dow is dready mapped.

If the override-redirect of the winde is False and if some other client has select&abstructur-
eRedirectMask on the parent windg then the X server generatedapRequestevent, and the
XMapWindow function does not map the windo Otherwise, the winde is mapped, and the X
server generatesMapNotify event.

If the window becomes vigrable and no earlier contents for it are remembered, the X server tiles
the windav with its background. If the window'background is undefined, the existing screen
contents are not altered, and the X server generates zero cErpmeeeveants. Ifbacking-store
was maintained while the windewas unmapped, nBxposeevents are generated. If backing-
store will nav be maintained, a full-winder exposure is alays generated. Otherwise, only visi-
ble regions may be reported. Similar tiling and exposure fiace for ay newly viewable infe-

riors.

If the windaw is an InputOutput window, XMapWindow generatexposeevents on each
InputOutput window that it causes to be displayed. If the client maps and paints the window

43

Xlib — C Library libX11 1.3.3

and if the client begins processingats, the windw is painted twice.To avoid this, first ask for
Exposeevents and then map the wingdpso the client processes inputeats as usual. Thevent
list will include Exposefor each windw that has appeared on the screen. The ciientmal
response to akexposeevent should be to repaint the winslo This method usually leads to sim-
pler programs and to proper interaction with wiwdoanagers.

XMapWindow can generate BadWindow error.
To map and raise a windo use XMapRaised.

XMapRaiseddisplay, w)

Display *display,

Windoww;
display Specifies the connection to the X server.
w Specifies the winde.

The XMapRaised function essentially is similar t§MapWindow in that it maps the window
and all of its subwindows thatVehad map requests. Howee, it dso raises the specified win-
dow to the top of the stackFor additional information, seXMapWindow .

XMapRaised can generate multiplBadWindow errors.
To map all subwindows for a specified winvdauise XMapSubwindows.

XMapSubwindavs (display, w)

Display *display;

Windoww;
display Specifies the connection to the X server.
w Specifies the winde.

The XMapSubwindows function maps all subwindows for a specified wiwdo top-to-bottom
stacking order The X server generaté&poseevents on each newly displayed windoThis

may be much more efficient than mapping ynaimdows one at a time because the server needs
to perform much of the work only once, for all of the windows, rather than for eachwvindo

XMapSubwindows can generate BadWindow error.

3.6. UnmappingWindows
Xlib provides functions that you can use to unmap a winolodl subwindows.

To unmap a windw, use XUnmapWindow .

44

Xlib — C Library libX11 1.3.3

XUnmapWindav (display, w)
Display *display,
Windoww;

display Specifies the connection to the X server.
w Specifies the winde.

The XUnmapWindow function unmaps the specified windand causes the X server to gener-
ate anUnmapNotify event. If the specified winde is dready unmapped{UnmapWindow

has no dect. Normalexposure processing on formerly obscured windows is performed. Any
child window will no longer be visible until another map call is made on the parent. In other
words, the subwindows are still mapped but are not visible until the parent is mapped. Unmap-
ping a windav will generateExposeevents on windows that were formerly obscured by it.

XUnmapWindow can generate BadWindow error.
To unmap all subwindows for a specified wimgaise XUnmapSubwindows.

XUnmapSubwindws (display, w)
Display *display;,
Windoww;

display Specifies the connection to the X server.
w Specifies the winde.

The XUnmapSubwindows function unmaps all subwindows for the specified wimdto bottom-

to-top stacking orderlt causes the X server to generatelaimapNotify event on each subwin-

dow and Exposeevents on formerly obscured winds. Usingthis function is much more effi-

cient than unmapping multiple windows one at a time because the server needs to perform much
of the work only once, for all of the windows, rather than for each windo

XUnmapSubwindows can generate BadWindow error.

3.7. Configuring Windows

Xlib provides functions that you can use tova@ wndow, resize a winda, move and resize a
window, or change a windovg border width. To change one of these parameters, set the appro-
priate member of thX¥WindowChangesstructure and OR in the corresponding value mask in
subsequent calls tdConfigureWindow. The symbols for the value mask bits and Xwin-
dowChangesstructure are:

45

Xlib — C Library libX11 1.3.3

/* Configure windev value mask bits */

#define CWX (1<<0)
#define CWY (1<<1)
#define CWWidth (1<<2)
#define CWHeight (1<<3)
#define CWBorderWidth (1<<4)
#define CWSibling (1<<5)
#define CWStackMode (1<<6)
[* Values */
typedef struct {

int x,y;

int width, height;

int border_width;

Window sibling;

int stack_mode;
} X WindowChanges;

The x and y members are used to set the wirglg\ad y coordinates, which are relaito the
parents arigin and indicate the position of the upper-left outer corner of the windbe width
and height members are used to set the inside size of thewyvimatoncluding the bordeeand
must be nonzero, orBadValue error results. Attempts to configure a root wiwdmveno
effect.

The border_width member is used to set the width of the borderdls piXotethat setting just
the border width leaes the outer-left corner of the windaoin a fixed position but mees the abso-
lute position of the windows' arigin. If you attempt to set the border-width attribute ofrpu-
tOnly window nonzero, aBadMatch error results.

The sibling member is used to set the sibling wimflor stacking operations. The stack_mode
member is used to setwahe windav is to be estacked and can be set&bove, Below, Toplf,
Bottomlf , or Opposite.

If the override-redirect flag of the windwis False and if some other client has selectab-
structureRedirectMask on the parent, the X server generat€oafigureRequestevent, and

no further processing is performed. Otherwise, if some other client has sétesiedRedirect-

Mask on the windav and the inside width or height of the windds being changed, Resiz-
eRequestevant is generated, and the current inside width and height are used instead. Note that
the override-redirect flag of the windohas no effect ofResizeRedirectMaskand thatSub-
structureRedirectMask on the parent has precedengerdResizeRedirectMaskon the win-

dow.

When the geometry of the wingdads changed as specified, the wind restacked among sib-
lings, and aConfigureNotify event is generated if the state of the windactually changes.
GravityNotify events are generated aft€onfigureNotify events. Ifthe inside width or height
of the windav has actually changed, children of the windare affected as specified.

If a window’s sze actually changes, the windadibwindows mee acording to their window
gravity. Depending on the windowhit gravity, the contents of the wingoalso may be meed
(see section 3.2.3).

46

Xlib — C Library libX11 1.3.3

If regions of the winde were obscured but moare not, exposure processing is performed on
these formerly obscured windows, including the wimdtiself and its inferiors. As a result of
increasing the width or height, exposure processing is also performeg nevaregons of the
window and ary regons where winde contents are lost.

The restack check (specificaltiie computation foBottomlf , Toplf , and Opposite) is per-

formed with respect to the windos\final size and position (as controlled by the other arguments
of the request), not its initial position. If a sibling is specified without a stack _mdhaj-a

Match error results.

If a sibling and a stack_mode are specified, the wiridaoestacked as follows:

Above The windav is placed just abee the sibling.

Below The windav is placed just belw the sibling.

Toplf If the sibling occludes the windo the windav is placed at the top of the stack.

BottomlIf If the window occludes the sibling, the windas placed at the bottom of the
stack.

Opposite If the sibling occludes the windg the windav is placed at the top of the stack.
If the window occludes the sibling, the windais placed at the bottom of the
stack.

If a stack_mode is specified but no sibling is specified, the wingleestacked as follows:

Above The windav is placed at the top of the stack.

Below The windav is placed at the bottom of the stack.

Toplf If any sibling occludes the winde, the windav is placed at the top of the stack.

BottomlIf If the window occludes ay sibling, the windev is placed at the bottom of the
stack.

Opposite If any sibling occludes the winde, the windav is placed at the top of the stack.
If the window occludes ay sibling, the windaev is placed at the bottom of the
stack.

Attempts to configure a root winaddhaveno effect.

To configure a windows dze, location, stacking, or bordese XConfigureWindow .

47

Xlib — C Library libX11 1.3.3

XConfigureWindav(display, w, value_maskvalueg
Display *display,
Windoww;
unsigned invalue_mask
XWindowChanges Values

display Specifies the connection to the X server.
w Specifies the winde to be econfigured.

value_mask Specifies which values are to be set using information in the values structure.
This mask is the bitwise inclug OR of the valid configure winde values bits.

values Specifies thexXWindowChanges structure.

The XConfigureWindow function uses the values specified in X\&indowChanges structure
to reconfigure a window’sze, position, bordeend stacking orderValues not specified are
taken from the existing geometry of the windo

If a sibling is specified without a stack_mode or if the wimdnot actually a sibling, 8ad-

Match error results. Note that the computationsBattomIf , Toplf , and Opposite are per-

formed with respect to the windosvfinal geometry (as controlled by the other arguments passed
to XConfigureWindow), not its initial geometry Any backing store contents of the wingdts
inferiors, and other newly visible windows are either discarded or changed to reflect the current
screen contents (depending on the implementation).

XConfigureWindow can generat8adMatch, BadValue, and BadWindow errors.
To move a wndow without changing its size, uséMoveWindow.

XMoveWindow (display, w, X, y)
Display *display;,
Windoww;
intx,y;

display Specifies the connection to the X server.
w Specifies the winde to be noved.

X
y Specify the x and y coordinates, which define the lneation of the top-left
pixel of the windows horder or the windw itself if it has no border.

The XMoveWindow function maves the specified windw to the specified x and y coordinates,
but it does not change the windandze, raise the winde, or change the mapping state of the
window. Moving a mapped winde may or may not lose the windoswontents depending on if
the windav is dbscured by nonchildren and if no backing stotists. Ifthe contents of the win-
dow are lost, the X server generatésposeevents. Moving a mapped winde generates
Exposeevents on ag formerly obscured windows.

If the override-redirect flag of the windwois False and some other client has selec8ubstruc-
tureRedirectMask on the parent, the X server generaté&oafigureRequestevent, and no fur-
ther processing is performed. Otherwise, the windomoved.

XMoveWindow can generate BadWindow error.

48

Xlib — C Library libX11 1.3.3

To change a windovg' sze without changing the upper-left coordinate, ¥&esizeWindow.

XResizeWindwv (display w, width, height)
Display *display,
Windoww;
unsigned intvidth, height,

display Specifies the connection to the X server.

w Specifies the winde.

width

height Specify the width and height, which are the interior dimensions of the window

after the call completes.

The XResizeWindowfunction changes the inside dimensions of the specified winaa
including its borders. This function does not change the wirglgeper-left coordinate or the
origin and does not restack the wimdoChanging the size of a mapped wimdmay lose its con-
tents and generatexposeevents. Ifa mapped windw is made smallerchanging its size gener-
atesExposeevents on windows that the mapped wimdformerly obscured.

If the override-redirect flag of the windwois False and some other client has selecgdbstruc-
tureRedirectMask on the parent, the X server generat&oafigureRequestevent, and no fur-
ther processing is performed. If either width or height is zeBadi/alue error results.

XResizeWindowcan generat®adValue and BadWindow errors.

To change the size and location of a wingose XMoveResizeWindow.

XMoveResizeWindw (display, w, X, y, width, height)

Display *display,
Windoww;
intx,y;
unsigned intvidth, height,
display Specifies the connection to the X server.
w Specifies the winde to be econfigured.
X
y Specify the x and y coordinates, which define the pesition of the windw rel-
ative to its parent.
width
height Specify the width and height, which define the interior size of the windo

The XMoveResizeWindowfunction changes the size and location of the specified wimdth-
out raising it. Moving and resizing a mapped wiwdoay generate akxposeevent on the win-
dow. Depending on the mesize and location parameters, moving and resizing a wirmday
generateExposeevents on windows that the windoformerly obscured.

If the override-redirect flag of the windwis False and some other client has selec8ubstruc-
tureRedirectMask on the parent, the X server generat€3oafigureRequestevent, and no fur-
ther processing is performed. Otherwise, the windae and location are changed.

49

Xlib — C Library libX11 1.3.3

XMoveResizeWindowcan generatBadValue and BadWindow errors.
To change the border width of avgh window, use XSetWindowBorderWidth .

XSetWindowBorderWdth (display, w, width)
Display *display;
Windoww;
unsigned inwvidth;

display Specifies the connection to the X server.
w Specifies the winde.
width Specifies the width of the windadborder.

The XSetWindowBorderWidth function sets the specified wind@Aborder width to the speci-
fied width.

XSetWindowBorderWidth can generate BadWindow error.

3.8. ChangingWindow Stacking Order

Xlib provides functions that you can use to raise, lpaisgulate, or restack windows.
To raise a winde so that no sibling winde obscures it, us&XRaiseWindow.

XRaiseWindav (display, w)
Display *display,
Windoww;

display Specifies the connection to the X server.
w Specifies the winde.

The XRaiseWindow function raises the specified wingdo the top of the stack so that no sib-

ling window obscures it. If the windows arega&ded as werlapping sheets of paper stacked on a
desk, then raising a windais analogous to moving the sheet to the top of the stack but leaving its
x and y location on the desk constant. Raising a mapped winwxy generaté&Exposeevets

for the windav and ary mapped subwindows that were formerly obscured.

If the override-redirect attribute of the windois False and some other client has selecgub-
structureRedirectMask on the parent, the X server generat€oafigureRequestevent, and
no processing is performed. Otherwise, the wim@oraised.

XRaiseWindow can generate BadWindow error.

To lower a windav so hat it does not obscureyasbling windows, useXLowerWindow .

50

Xlib — C Library libX11 1.3.3

XLowerWindaow (display, w)
Display *display,
Windoww;

display Specifies the connection to the X server.
w Specifies the winde.

The XLowerWindow function lowers the specified wingdo the bottom of the stack so that it
does not obscure wysibling windows. If the windows are garded as werlapping sheets of

paper stacked on a desk, then lowering a winidanalogous to moving the sheet to the bottom
of the stack but leaving its x and y location on the desk constant. Lowering a mapped window
will generateExposeevents on ag windows it formerly obscured.

If the override-redirect attribute of the windois False and some other client has selecgb-
structureRedirectMask on the parent, the X server generat€&oafigureRequestevent, and
no processing is performed. Otherwise, the wimdolowered to the bottom of the stack.

XLowerWindow can generate BadWindow error.
To drculate a subwinde up or cown, useXCirculateSubwindows.

XCirculateSubwindws (display, w, direction)
Display *display,
Windoww;
int direction;

display Specifies the connection to the X server.
w Specifies the winde.

direction Specifies the direction (up or down) that you want to circulate the windou
can pasfRaiseLowestor LowerHighest.

The XCirculateSubwindows function circulates children of the specified windo the speci-

fied direction. If you speciffRaiseLowest XCirculateSubwindows raises the lowest mapped
child (if any) that is occluded by another child to the top of the stack. If you spemifgrHigh-

est, XCirculateSubwindows lowers the highest mapped child (if any) that occludes another
child to the bottom of the stack. Exposure processing is then performed on formerly obscured
windows. If some other client has select8dbstructureRedirectMask on the windw, the X

server generates@irculateRequestevent, and no further processing is performed. If a child is
actually restacked, the X server generat€raulateNotify event.

XCirculateSubwindows can generat®adValue and BadWindow errors.

To raise the lowest mapped child of a windihat is partially or completely occluded by another
child, useXCirculateSubwindowsUp.

51

Xlib — C Library libX11 1.3.3

XCirculateSubwindasUp (display, w)
Display *display,
Windoww;

display Specifies the connection to the X server.
w Specifies the winde.

The XCirculateSubwindowsUp function raises the lowest mapped child of the specified window
that is partially or completely occluded by another child. Completely unobscured children are not
affected. Thids a comenience function equalent to XCirculateSubwindows with RaiselLow-

est specified.

XCirculateSubwindowsUp can generate BadWindow error.

To lower the highest mapped child of a wimdthat partially or completely occludes another
child, useXCirculateSubwindowsDown.

XCirculateSubwindowsDan (display; w)
Display *display,
Windoww;

display Specifies the connection to the X server.
w Specifies the winde.

The XCirculateSubwindowsDown function lowers the highest mapped child of the specified
window that partially or completely occludes another child. Completely unobscured children are
not afected. Thidgs a cowenience function equélent to XCirculateSubwindows with Lower-
Highest specified.

XCirculateSubwindowsDown can generate BadWindow error.
To restack a set of windows from top to bottom, X&estackWindows.

XRestackWindws (display, windows nwindows;
Display *display,
Windowwindowg];
int nwindows

display Specifies the connection to the X server.

windows Specifies an array containing the windows to be restacked.
nwindows Specifies the number of windows to be restacked.

The XRestackWindows function restacks the windows in the order specified, from top to bot-
tom. Thestacking order of the first windoin the windows array is unaffected, but the other win-
dows in the array are stacked underneath the first winddhe order of the arrayThe stacking
order of the other windows is nofedted. Br each windw in the windav array that is not a

child of the specified windwg a BadMatch error results.

If the override-redirect attribute of a windois False and some other client has selecfub-
structureRedirectMask on the parent, the X server genera@emfigureRequestevents for

52

Xlib — C Library libX11 1.3.3

each windw whose w@erride-redirect flag is not set, and no further processing is performed. Oth-
erwise, the windows will be restacked in top-to-bottom order.

XRestackWindows can generate BadWindow error.

3.9. ChangingWindow Attributes

Xlib provides functions that you can use to set wimdtiributes. XChangeWindowAttributes

is the more general function that allows you to set one or more wiatttibutes provided by the
XSetWindowAttributes structure. Thether functions described in this sectionallou to set
one specific windw attribute, such as a windogvbackground.

To change one or more attributes for aegiwindow, use XChangeWindowAttributes.

XChangeWindowAttrilntes @isplay, w, valuemaskattributes
Display *display,
Windoww;
unsigned longaluemask
XSetWindowAttributes attributes

display Specifies the connection to the X server.
w Specifies the winde.

valuemask Specifies which windw attributes are defined in the attributeganent. This
mask is the bitwise inclug OR of the valid attribute mask bits. If valuemask is
zero, the attributes are ignored and are not referenced. The values and restric-
tions are the same as f&CreateWindow.

attributes Specifies the structure from which the values (as specified by the value mask) are
to be talken. Thevalue mask should ve the appropriate bits set to indicate
which attributes hae been set in the structure (see section 3.2).

Depending on the valuemask, tk€hangeWindowAttributes function uses the window
attributes in theXSetWindowAttributes structure to change the specified wiwdatributes.
Changing the background does not cause the windatents to be changedo repaint the win-
dow and its background, useClearWindow . Setting the border or changing the background
such that the border tile origin changes causes the border to be repainted. Changing the back-
ground of a root windw to None or ParentRelative restores the default background pixmap.
Changing the border of a root winddo CopyFromParent restores the default border pixmap.
Changing the win-gravity does not affect the current position of the win@bhanging the back-
ing-store of an obscured winddo WhenMapped or Always, or changing the backing-planes,
backing-pixel, or sae-under of a mapped windomay hare ro immediate déct. Changinghe
colormap of a winde (that is, defining a me map, not changing the contents of the existing
map) generates @olormapNotify event. Changinghe colormap of a visible windomay have
no immediate effect on the screen because the map may not be installéthgésakCol-

ormap). Changinghe cursor of a root windoto None restores the default cursoWheneer
possible, you are encouraged to share colormaps.

Multiple clients can select input on the same winddheir event masks are maintained sepa-
rately When an eent is generated, it is reported to all interested clients. Meawenly one
client at a time can select f&ubstructureRedirectMask, ResizeRedirectMask and Button-
PressMask If a dient attempts to select piof these gent masks and some other client has

53

Xlib — C Library libX11 1.3.3

already selected one BadAccesserror results. There is only one do-not-propagate-mask for a
window, not one per client.

XChangeWindowAttributes can generat8adAccess BadColor, BadCursor, BadMatch,
BadPixmap, BadValue, and BadWindow errors.

To =t the background of a winddo a gven pixel, useXSetWindowBackground.

XSetWindavBackgrounddisplay, w, background_pixél
Display *display;
Windoww;
unsigned londpackground_pixel

display Specifies the connection to the X server.
w Specifies the winde.

background_pixel
Specifies the pixel that is to be used for the background.

The XSetWindowBackground function sets the background of the windi the specified pixel
value. Changinghe background does not cause the winmdontents to be changeXSetWin-
dowBackground uses a pixmap of undefined size filled with the pixel value you passed. If you
try to change the background of baputOnly window, a BadMatch error results.

XSetWindowBackground can generat8adMatch and BadwWindow errors.

To =t the background of a winddo a gven pixmap, useXSetWindowBackgroundPixmap.

XSetWindavBackgroundPixmapdisplay, w, background_pixmap
Display *display;,
Windoww;
Pixmapbackground_pixmap

display Specifies the connection to the X server.
w Specifies the winde.

background_pixmap
Specifies the background pixmdparentRelative, or None.

The XSetWindowBackgroundPixmap function sets the background pixmap of the windo

the specified pixmap. The background pixmap can immediately be freed if no further explicit ref-
erences to it are to be made.PidrentRelative is specified, the background pixmap of the win-
dow’s parent is used, or on the root wingdhe default background is restored. If you try to

change the background of &mputOnly window, a BadMatch error results. If the background

is set toNone, the windav has no defined background.

XSetWindowBackgroundPixmap can generat8adMatch, BadPixmap, and BadWindow
errors.

54

Xlib — C Library libX11 1.3.3

Note

XSetWindowBackground and XSetWindowBackgroundPixmap do not change
the current contents of the windo

To change and repaint a windaborder to a gien pixel, useXSetWindowBorder.

XSetWindavBorder {display, w, border_pixe)

Display *display;,

Windoww;

unsigned londporder_pixel|
display Specifies the connection to the X server.
w Specifies the winde.

border_pixel Specifi