4.4. Serial Hardware

RS-232 is currently the most common standard for serial communications in the PC world. It uses a number of circuits for transmitting single bits, as well as for synchronization. Additional lines may be used for signaling the presence of a carrier (used by modems) and for handshaking. Linux supports a wide variety of serial cards that use the RS-232 standard.

Hardware handshake is optional, but very useful. It allows either of the two stations to signal whether it is ready to receive more data, or if the other station should pause until the receiver is done processing the incoming data. The lines used for this are called “Clear to Send” (CTS) and “Ready to Send” (RTS), respectively, which explains the colloquial name for hardware handshake: “RTS/CTS.” The other type of handshake you might be familiar with is called “XON/XOFF” handshaking. XON/XOFF uses two nominated characters, conventionally Ctrl-S and Ctrl-Q, to signal to the remote end that it should stop and start transmitting data, respectively. While this method is simple to implement and okay for use by dumb terminals, it causes great confusion when you are dealing with binary data, as you may want to transmit those characters as part of your data stream, and not have them interpreted as flow control characters. It is also somewhat slower to take effect than hardware handshake. Hardware handshake is clean, fast, and recommended in preference to XON/XOFF when you have a choice.

In the original IBM PC, the RS-232 interface was driven by a UART chip called the 8250. PCs around the time of the 486 used a newer version of the UART called the 16450. It was slightly faster than the 8250. Nearly all Pentium-based machines have been supplied with an even newer version of the UART called the 16550. Some brands (most notably internal modems equipped with the Rockwell chip set) use completely different chips that emulate the behavior of the 16550 and can be treated similarly. Linux supports all of these in its standard serial port driver.[1]

The 16550 was a significant improvement over the 8250 and the 16450 because it offered a 16-byte FIFO buffer. The 16550 is actually a family of UART devices, comprising the 16550, the 16550A, and the 16550AFN (later renamed PC16550DN). The differences relate to whether the FIFO actually works; the 16550AFN is the one that is sure to work. There was also an NS16550, but its FIFO never really worked either.

The 8250 and 16450 UARTs had a simple 1-byte buffer. This means that a 16450 generates an interrupt for every character transmitted or received. Each interrupt takes a short period of time to service, and this small delay limits 16450s to a reliable maximum bit speed of about 9,600 bps in a typical ISA bus machine.

In the default configuration, the kernel checks the four standard serial ports, COM1: through COM4:. The kernel is also able to automatically detect what UART is used for each of the standard serial ports, and will make use of the enhanced FIFO buffer of the 16550, if it is available.

Notes

[1]

Note that we are not talking about WinModem™ here! WinModems have very simple hardware and rely completely on the main CPU of your computer instead of dedicated hardware to do all of the hard work. If you're purchasing a modem, it is our strongest recommendation to not purchase such a modem; get a real modem. You may find Linux support for WinModems, but that makes them only a marginally more attractive solution.